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Abstract

This is a lecture note originated from the course “Differentiable Manifold” taught at

Xiamen University from 2017 to 2020. The course is taught in 16 weeks with three 45-

minutes classes each week. The audience are usually first year graduate students and senior

undergraduates with a math major.

The main objective of this note is to provide a quick view to all the basics in Differ-

entiable Manifolds, as well as an introduction to Riemannian Geometry. This note is not

self-contained, since many proofs of theorems can be easily found in standard textbooks.

More efforts are made in explaining the geometric ideas lying behind the concepts, and

treating the contents as a natural generalization of the classical calculus in Euclidean spaces.

Any suggestions or comments are welcome.

Email: songchong@xmu.edu.cn
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2 CHAPTER 0. INTRODUCTION AND PRELIMINARIES

0.1 About the course

0.1.1 Euclidean space revisited

The familiar Euclidean space is a model space with rich structures. We have learned

that the Euclidean space En is, among other things,

• A linear space or vector space. That means after fixing a point O as the origin, each

point P can be identified with a vector ~v =
−→
OP (ie. an object with both length and

direction). Then we can define scalar multiplication and addition of vectors. In this

way, we think of En as a space of vectors, such that for each vector ~v, ~w ∈ En, the

vector λ~v + µ~w also belongs to En, for all λ, µ ∈ R1. Then we can talk about linear

independent basis and discuss about linear transformations of the space.

• A metric space. For every two points P,Q ∈ En, we can define the distance function

d(P,Q). The distance function d then satisfies

1. d(P,Q) ≥ 0 and the identity holds iff P = Q;

2. d(P,Q) = d(Q,P );

3. the triangle inequality d(P,Q) + d(Q,R) ≥ d(P,R).

• A topological space. The topology defines the ”openness” of arbitrary sets. It then

follows the notion of close and compact sets, neighborhoods, etc. Moreover, we can

define continuous maps and homotopy, homology on topological spaces. Note that the

topology can be induced by the metric structure on En.

• A differentiable space. This means, by introducing a coordinate system, that we can

perform differentiation on functions defined on En. Then we have the notion of tangent

vectors and we can push through a long way to develop a full powerful kit of calculus.

• A geometric space. By introducing inner product on En, we can define length of vectors

and angles between them. In particular, we have the notion of orthogonal vectors. Then

we can proceed to define the length of a smooth curve, the area or volume of higher

dimensional regions by means of integrations. The geometric structure further leads

to a metric structure, hence a topology on En.
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0.1. ABOUT THE COURSE 3

0.1.2 Goal of this course

In real word applications and also motivated by physics backgrounds, we need to study

spaces different from the standard Euclidean space. We are usually led to study spaces with

only one or two structures listed above, often in a more abstract way. Just think of the two-

dimensional sphere. It is not a linear space and we do not have a globally defined coordinate

system. However, locally around any point on the sphere, it looks exactly the same as the

two-dimensional plane. Imagine about the earth as a total space and the local area where

we live as a local region. It turns out that we can still do analysis and study the geometry

of this space.

In the course of differentiable manifolds, we will learn how to do calculus on such spaces.

Intuitively, manifolds are glued together by small pieces of the Euclidean space, but usually

in a very non-trivial way. Thus the global picture of the manifold can be very complicated

and totally different from the familiar Euclidean space. Furthermore, we want to study the

geometric structures on manifolds by assigning a general notion of inner products. This leads

to the fascinating subject of Riemannian Geometry.

0.1.3 References

In graduate courses, you should get used to self-motivated study and learn from different

resources. Try not to stick to one textbook when you get stuck! In the reference below are

some textbooks we will often refer to.

0.1.4 Online study and exam

We might need to study online, at least for several weeks at the beginning of this

semester. I will upload lecture notes and short videos that explain the main concepts to the

website: http://course.xmu.edu.cn/. You can also download digital version of the textbooks

in the reference. Read the lecture notes carefully before each class, and refer to textbooks

for more details. Online classes will be devoted to proofs of theorems, discussions and Q&A.

Try to do all the exercises in this note as homework by yourself. The examples also

serves as standard exercises. You can find more exercises in reference [2] and [4]. You are

required to hand in your homework every Friday during the period of online teaching, by
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4 CHAPTER 0. INTRODUCTION AND PRELIMINARIES

email and in pdf format. My email address is: songchong@xmu.edu.cn. It is preferable to

prepare the pdf file in LaTex.

The final exam will be in the form of a two-hour paper at the end of this semester,

covering all the topics in this lecture note. Your final score in this course will depend on

your performance in class (30%), of your homework (20%) and the final exam (50%).

Ask me online if you still have any questions about the course.
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0.2. PRELIMINARIES 5

0.2 Preliminaries

Here we list some basic concepts and theorems that we need. For self-contained proofs

of the theorems, we refer to the appendix of [1] and Chapter 0 of [2]. You can also refer to

any standard textbook for more details.

0.2.1 Basic topology

Let X be an nonempty set.

Definition 0.2.1 A topology τ of X is a family of subsets in X, which is called open sets,

which satisfies the following properties:

1. the total space X and empty set ∅ belongs to τ ;

2. the intersection of finitely many open sets is an open set;

3. any union of open sets is still open.

We call the pair (X, τ) a topological space.

Definition 0.2.2 Let B be a family of subsets in X. If B satisfies

1. for any point x ∈ X, there exists B ∈ B such that x ∈ B;

2. for any two subsets B1, B2 ∈ B, if there is a point x ∈ B1 ∩ B2, then there exists

B3 ∈ B such that x ∈ B3 ⊂ B1 ∩B2.

Then B is called a topological basis of X.

Definition 0.2.3 Let (X, τ) be a topological space and x ∈ S is a point. Suppose U is a

set that contains x. If there is an open set A ∈ τ such that x ∈ A ⊂ U , then U is called a

neighborhood of x. If U is open, then U is called an open neighborhood of x.

Starting from a topology define above, one can proceed to define closed sets, continuous

functions similar to those in Euclidean spaces.

Finally, we also need the following concepts. Let X be a topological space.

Definition 0.2.4 If X has a countable basis of open sets, then we say X is second countable.

Definition 0.2.5 If for any two distinct points x, y ∈ X, there exists two open sets U, V ,

such that x ∈ U, y ∈ V and U ∩ V = ∅, then X is called a Hausdorff space.
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6 CHAPTER 0. INTRODUCTION AND PRELIMINARIES

0.2.2 Implicit and inverse function theorem

Theorem 0.2.6 (Inverse Function Theorem) Let Ω ⊂ Rn be an open set and f : Ω →
Rn be a Ck map, k ≥ 1. If the Jacobian matrix Df(x0) is invertible for x0 ∈ Ω, then there

exists an open neighborhood U os x0 such that f is a Ck-diffeomorphism on U .

Theorem 0.2.7 (Implicit Function Theorem) Suppose U ⊂ Rm, V ⊂ Rn are two open

sets and F : U × V → Rn is a C1 map. If F (x0, y0) = 0 for some (x0, y0) ∈ U × V and the

Jacobian determinant

detDyF =
∂F

∂y
(x0, y0) =

∂(F 1, · · · , F n)

∂(y1, · · · , yn)
(x0, y0) 6= 0,

then there exists a neighborhood U ′ near x0, V ′ near y0 and an implicit function f : U ′ → V ′

such that the graph

{(x, f(x))|x ∈ U ′} = {(x, y) ∈ U ′ × V ′|F (x, y) = 0}.

One can first prove the Inverse Function Theorem by the following contraction mapping

principle, and then prove the Implicit Function Theorem.

Theorem 0.2.8 (Contraction mapping principle) Let M be a complete metric space

and suppose T : M →M is a map such that

d(Tx, Ty) ≤ θd(x, y),

where θ < 1. Then T has a unique fixed point.

Exercise 0.2.9 Show that the Inverse Function Theorem and the Implicit Function Theorem

are equivalent.

As an application of the IFT, we have the following Rank Theorem. Recall that the

rank of a function F : U → Rn at x ∈ U is defined as the rank of the Jacobian matrix

DF (x). We say that F has rank k if the rank of F equals k at every point x ∈ U .

Theorem 0.2.10 (Rank Theorem) Let U ⊂ Rm, V ⊂ Rn be open subsets and F : U → V

be a smooth function with rank r. Then for any a ∈ U, b = F (a) ∈ V , there exists open
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0.2. PRELIMINARIES 7

neighborhoods U ′ ⊂ U, V ′ ⊂ V and smooth diffeomorphisms u : U ′ → Rm, v : V ′ → Rn, such

that the composed map v ◦ F ◦ u−1 has the form

v ◦ F ◦ u−1(x1, · · · , xm) = (x1, · · · , xr, 0, · · · , 0).

Proof. First we construct the map u. Since F = (f 1, · · · , fn) has rank r, by rearranging

indices if necessary, we may assume that the r × r matrix(
∂f i

∂xj

)
1≤i,j≤r

is non-degenerate in a neighborhood of a. Define the map u by

u(x1, · · · , xm) = (f 1(x), · · · , f r(x), xr+1, · · · , xm).

Obviously, Du is non-degenerate, hence by the IFT, there is a small neighborhood U ′ ⊂ U

on which u has a smooth inverse u−1. Then the composed map F ◦ u−1 has the form

F ◦ u−1(x1, · · · , xm) = (x1, · · · , xr, g1(x), · · · , gn−r(x)).

Note that F ◦ u−1 also has rank r. It follows that the matrix(
∂gα

∂xβ

)
1≤α,β≤n−r

vanishes. Therefore, the functions gα, 1 ≤ α ≤ n− r only depend on x1, · · · , xr. (One may

assume the domain is a convex ball.)

Next we construct the function v by

v(y1, · · · , yn) =
(
y1, · · · , yr, yr+1 − g1(y1, · · · , yr), · · · , yn − gn−r(y1, · · · , yr)

)
.

Then Dv has the form (
Ir 0

∗ In−r

)
and hence is a smooth diffeomorphism on a neighborhood V ′ ⊂ V .
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8 CHAPTER 0. INTRODUCTION AND PRELIMINARIES

It is easy to check that u, v satisfies the requirements and the theorem is proved. �

0.2.3 Sard’s theorem

For a differentiable map f : Rm → Rn, rank f(x) is the rank of the Jacobian matrix Df

at x.

Theorem 0.2.11 (Sard’s Theorem) Suppose U ⊂ Rm is an open set, F : U → Rn is a

smooth map. Let A = {x ∈ U | rankF (x) < n}, then the (Lebesgue) measure of F (A) ⊂ Rn

is zero.

For a proof of the Sard’s theorem and more detailed discussions, we refer to Chapter

1.30 in [2]. Intuitively, the measure of A is zero because it is a low dimensional set. As

an easy corollary, if m < n, then the image of a smooth map has measure zero, since

rankF ≤ min{m,n}.

0.2.4 Basic ODE theory

Theorem 0.2.12 Suppose U ⊂ Rn is an open set and F : I×U → Rn is Lipschitz in x ∈ U .

Then for the ODE
d

dt
x(t) = F (t, x(t)), f(0) = x0 ∈ U.

1. there is a unique continuous solution x(t) : [0, T )→ Rn for some T > 0;

2. the solution x(t) is smooth if F is smooth;

3. x(t) and T depends continuously on the initial value x0.

This theorem can also be proved by using the contraction mapping principle.
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12 CHAPTER 1. MANIFOLDS

1.1 Definition of differentiable manifolds

Intuitively, a manifold is glued together by small pieces (open sets) of Euclidean spaces.

We say a manifold is differentiable if the pieces are glued in a smooth way. An easy example

you may keep in mind is the standard 2-sphere, which can be constructed by gluing two caps

(open disks) together. Also the standard Euclidean space serves as a trivial example (only

one piece!).

1.1.1 Differentiable structure

There are usually two ways to introduce the concept of differentiable manifold. A

popular way is to start from topological manifolds an then add the differentiable structure,

which appears in most textbooks (cf. [2]). But here we follow Hitchin [1] and construct the

differentiable manifolds directly (which naturally induce the topology).

Definition 1.1.1 A coordinate chart on a space X is a subset U ⊂ X together with a

bijection

φ : U → φ(U) ⊂ Rn

onto an open set φ(U) in Rn. The coordinates of a point p ∈ U in this chart are just the

coordinates of φ(p) = (x1(p), · · · , xn(p)) ∈ Rn.

A coordinate chart is also called a local chart and denoted by (U, φ), or (U, φ;xi) or

simply (U ;xi).

Thus a coordinate chart associates to each point of a local region (a small piece of

the space) a tuple of numbers, i.e. coordinates, such that we can express the point and

eventually do calculus. The Euclidean space En can be covered by one chart once we fix the

axes. However, many spaces can not be covered by a single chart. Thus we need to know

how different charts are glued together, or in other words, how to transform from one chart

to another.

Definition 1.1.2 An atlas on X is a collection of coordinate charts {(Uα, φα)}α∈I such that

1. X is covered by {Uα}α∈I

2. for each α, β ∈ I, φα(Uα ∩ Uβ) is open in Rn
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1.1. DEFINITION OF DIFFERENTIABLE MANIFOLDS 13

X

Uα Uβ

Uα ∩ Uβ

φα φβ

gβα = φβ ◦ φ−1
α

Rn Rngαβ = φα ◦ φ−1
β

Figure 1.1: Atlas: gluing charts

3. for each α, β ∈ I, the transition map

gβα := φβ ◦ φ−1
α : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ)

is a smooth diffeomorphism.

The transition maps {gαβ} play a key role in the construction of a manifold, and tells us

how to translate the coordinates in one chart to another, see Figure 1.1 for an illustration.

We say a function f is smooth if it has derivatives of all orders, and f is called a smooth

diffeomorphism if it has a smooth inverse. It is perfectly possible to define the atlas and thus

develop the theory of manifolds with less differentiability, by only requiring the transition

map belonging to Ck for some integer k. But in our course, we will restrict ourselves to the

category of smooth maps for simplicity.

There could be different atlases on a space X. For example, we can choose different

axes on En. But we would like to think of X as an object independent of the choice of atlas,

just like the Euclidean space does not depend on the choice of axes.
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14 CHAPTER 1. MANIFOLDS

Definition 1.1.3 Two atlases {(Uα, φα)}α∈I , {(Vβ, ψβ)}β∈J are compatible or equivalent if

their union is an atlas. The equivalent class of an atlas is called a differentiable structure

on X.

An alternative way to define a differentiable structure is to consider the maximal atlas

which contains all possible compatible charts. Now we are in place to define differentiable

manifolds, which we will simply call manifolds.

Definition 1.1.4 A differentiable manifold is a space X with a differentiable structure.

One can easily see that the notion of dimension makes sense on a manifold, at least for

connected ones. The definition of a manifold takes into account the existence of many more

atlases. But to prove something is a manifold, all you need is to find one atlas.

Note that there is a natural topology on a manifolds which is induced by the differ-

entiable structure. One only need to define a subset V ⊂ X is open if, for each α ∈ I,

φα(V ∩ Uα) is open in Rn. An immediate result is that the set Uα in each chart is open.

More over, the coordinate map φα : Uα → φα(Uα) is a homeomorphism in the induced

topology.

Exercise 1.1.5 Check that the differentiable structure indeed gives a topology.

To proceed, we will always assume that the manifold topology is Hausdorff and second

countable in this course. The assumption is very common for topological spaces, which

implies that all manifolds are paracompact. That is, every open cover has an open refinement

that is locally finite.

1.1.2 Basic examples

Here are some examples of manifolds. For a discussion on the topology in quotient

spaces, we refer to Section 1.2 in [3].

1. Euclidean space.

2. The space of straight lines in the two dimensional plane.
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1.1. DEFINITION OF DIFFERENTIABLE MANIFOLDS 15

3. Consider R1 as an additive group and the subgroup of integers Z. The 1-dimensional

torus is the quotient space T1 = R1/Z.

4. The n-dimensional sphere

Sn = {x ∈ Rn+1||x| = 1}.

5. The real projective space

RP n = {n-dimensional subspaces of Rn+1}.

We can also construct new manifolds from given manifolds.

• Open subsets of a given manifold are called open manifolds, e.g., the general linear

group

GL(n) = {A ∈Mn×n| detA 6= 0}.

• The product manifold of two manifolds M ×N , e.g., the torus S1 × S1.

Exercise 1.1.6 Construct an atlas on the 2-dimensional torus

T2 = R2/(Z× Z).

1.1.3 Partition of unity

The atlas and the differentiable structure of a manifold defines the way in which small

pieces (local charts) are glued together. But sometimes, we need to go the opposite way,

namely, we need to decompose a globally defined object on a manifold to small pieces in a

specific way. The partition of unity offers such an useful tool.

Definition 1.1.7 A partition of unity is a family of smooth functions {φα}α∈I such that

1. 0 ≤ φα ≤ 1;

2. {suppφα}α∈I is locally finite;

3.
∑

α∈I φα = 1.
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16 CHAPTER 1. MANIFOLDS

t t

f(t)

1 10 0

g(t)

t10

h(t)

2

Figure 1.2: Bump function

The key property of a partition of unity lies in item (2). Here locally finite means each x

is covered by at most finitely many supports suppφα’s. This ensures that the summation

in item (3) make sense. To construct a partition of unity, we start from the so-called bump

functions or cut-off functions.

We construct a bump function step by step (see Figure 1.2). First note that the following

function is smooth (but not analytic)

f(t) =

e−1/t, t > 0

0, t ≤ 0
.

Now let

g(t) =
f(t)

f(t) + f(1− t)

so that g is identically 1 when t > 1 and vanishes if t ≤ 0. Next write

h(t) = g(t+ 2)g(2− t).

The function h(t) vanishes if |t| > 2 and equals 1 where |t| < 1. Finally we make an

n-dimensional version

k(x1, · · · , xn) = h(x1)h(x2) · · ·h(xn).

For any r > 0, the function k(x/r) is identically 1 in a ball of radius r and 0 outside of a ball

of radius 2r. This gives a baby-version of bump functions. By a simple covering argument,

we can construct the following cut-off function.
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1.1. DEFINITION OF DIFFERENTIABLE MANIFOLDS 17

Lemma 1.1.8 Let U, V ⊂ Rn be two open sets where Ū ⊂ V , then there exists a smooth

bump function φ such that

φ(x) =

1, x ∈ Ū ;

0, x ∈ Rn \ V.

Proof. For simplicity, we assume Ū is compact. For each p ∈ Ū we can find some rx > 0

such that

x ∈ Brx(x) ⊂ B2rx(x) ⊂ V.

Then {Brx(x)}x∈Ū forms an open cover of Ū . Since Ū is compact, we can find a finite

sub-cover {Bri(xi)}1≤i≤K .

From previous discussion, there is a bump function gi such that gi = 1 on Bri(xi) and

vanishes outside B2ri(x). Now we set

φ(x) = 1−
K∏
i=1

(1− gi(x)).

Then one checks this function satisfies the lemma. �

Now we are in place to construct the partition of unity. Recall that by assumption, our

manifolds are Hausdorff and second countable.

Theorem 1.1.9 Given any open covering {Vα}α∈I of a manifold M , there exists a partition

of unity {φi} subordinate to {Vα}α∈I , i.e. for all i, there exists some α(i) ∈ I such that

suppφi ⊂ Vα(i).

Proof. Step 1. Exhaustion of M .

Since M is second countable, there is a countable basis of open sets {Oi} such that

M = ∪iOi. We may assume that Ōi is compact, since we can shrink Oi if necessary such

that each Oi is homeomorphic to an open ball in the Euclidean space.

Now put G1 = O1. Then since the compact set Ḡ1 is covered by ∪iOi, there are finitely

many Oi’s, such that

Ḡ1 ⊂ ∪k1i=1Oi =: G2.
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18 CHAPTER 1. MANIFOLDS

Next we take the closure of G2 and repeat the process. By induction, we will eventually get

an exhaustion sequence {Gi} such that

M = ∪∞i=1Gi, Ḡi ⊂ Gi+1.

Step 2. Locally finite refinement.

For each i > 1, consider the set

Ki := Ḡi+1 \Gi ⊂ Ei := Gi+2 \ Ḡi−1.

Since the compact set Ki is covered by {Vα ∩ Ei}, we can extract a finitely cover of open

sets which we denote by {Uil}1≤l≤Li , such that Ki ⊂ ∪Lil=1Uil.

Clearly {Uil}1≤i≤+∞,1≤l≤Li is a locally finite cover of M , since for each i, Uil ∩ Ujs = ∅
for sufficiently large j.

Step 3. Bump functions.

Now for any x ∈ M , there is an integer i such that x ∈ Ki, thus we can find some

Uil which covers x. Then by Lemma 1.1.8, we can construct a bump function ψx such that

suppψx ⊂ Uil and ψx|Wx = 1 for some open neighborhood Wx.

Because the compact set Ki is covered by {Wx}x∈Ki , again there is a finite cover

{Wis}1≤s≤Si with corresponding bump functions {ψis}. Finally, we let

φis =
ψis∑
i,s ψis

.

This gives the desired partition of unity after re-indexing. �

Exercise 1.1.10 For a compact manifold, the construction of partition of unity can be con-

siderably simplified. For an open covering of a compact manifold M , try to prove the existence

of a partition of unity by yourself.

Exercise 1.1.11 Suppose U is an open subset of a manifold M and p ∈ U is a point. Show

that for any smooth function f : U → R1, there is a smooth function f̃ : M → R1 such that

f̃ coincides with f on a neighborhood of p.
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1.2. MAPS AND SUBMANIFOLDS 19

1.2 Maps and Submanifolds

In this section we define smooth maps between manifolds and then introduce the concept

of submanifolds. Finally we will see that any manifold can be realized as a submanifold of

a large dimensional Euclidean space.

1.2.1 Smooth maps on manifolds

Given two manifolds M , N and a point p ∈ M , a map F : M → N is called a smooth

map at p if there exists a local chart (U, φ;x) at p and (V, ψ; y) at F (p) ∈ N such that the

map

ψ ◦ F ◦ φ−1 : φ(U)→ ψ(V )

is smooth. If F is smooth at any point in M , then we call it a smooth map on M . For

simplicity, we often write y = F (x) in local coordinates instead of y = ψ ◦F ◦φ−1(x) if there

is no need to emphasis the coordinate charts.

The rank of F at p is defined by rank of the Jacobian matrix D(ψ ◦ F ◦ φ−1)(p) and

denoted by rankFp. It is easy to verify that the rankFp is independent of choice of local

charts and hence is well-defined. Obviously, if dimM = m and dimN = n, then rankFp ≤
min{m,n}; if rankFp = min{m,n}, then we say F is full rank at p.

Example 1.2.1 A smooth curve is a smooth map γ : I →M , where I ⊂ R1 is an interval.

A curve is called closed if it extends to a smooth map γ : S1 →M .

Example 1.2.2 A smooth function on M is a smooth map f : M → R1. Construct a

smooth function by using the bump function.

A smooth map F : M → N is called a diffeomorphism if it has a smooth inverse

F−1 : N →M . The role of diffeomorphism is just like that of homeomorphisms in topology.

If such a diffeomorphism exists, then we say the two manifolds M and N are diffeomorphic,

that it, they are equivalent in the category of differentiable manifolds.

Example 1.2.3 Let M be the standard real line R1 with identity map φ = id as the coor-

dinate chart. Let N be the real line R1 endowed with the coordinate chart ψ(x) = x3. Since
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the function φ ◦ ψ−1(x) = x1/3 is not differentiable at x = 0, the differentiable structures of

M and N are not equivalent by Definition 1.1.3. But there is a diffeomorphism

F : M → N, x→ x1/3.

such that ψ ◦ F ◦ φ = id. Thus the two manifolds M and N are in fact diffeomorphic.

A natural question is: on a given manifold, how many differentiable structures exist that

are not diffeomorphic? In 1956, J. Milnor first discovered an exotic differentiable structure

on S7 that is different from the standard one. It is known that the differentiable structure

on Rn, n 6= 4 is unique in the sense of diffeomorphisms. However, the pioneering work of

Freedman and Donaldson showed that there are infinitely many different differentiable struc-

tures on R4. Many deep and sophisticated theories in geometry and analysis are developed

to answer these questions in topology.

Exercise 1.2.4 Show that the 1-dimensional torus T1 = R1/Z, real projective space RP 1

and the 1-sphere S1 are diffeomorphic.

1.2.2 Subsets as manifolds

The following theorem allows us to find more manifolds by an implicit method, i.e.

without constructing explicit atlas.

Theorem 1.2.5 Let Ω ⊂ Rm+n be an open set and F : Ω → Rn be a smooth function.

Taking c ∈ Rn, if for each a ∈ F−1(c), F is full rank, i.e. rankFa = n. Then F−1(c)

has the structure of an m-dimensional manifold which is Hausdorff and second countable.

Moreover, for each a ∈ F−1(c), there exists an neighborhood U ⊂ Rm+n and a diffeomorphism

G : U → V ⊂ Rm+n such that

G(U ∩ F−1(c)) = {(x, y) ∈ V |y = 0 ∈ Rn}.

Now we have more examples of manifolds.

Example 1.2.6 1. The n-sphere

Sn = {x ∈ Rn||x| = 1}.
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2. The group O(n) of n× n orthogonal matrices, i.e.

O(n) = {A ∈M(n)|ATA = In}.

We also note that some manifolds are groups in the mean time. This leads to the

definition of Lie groups, which provides a rich class of manifolds with nice properties.

Definition 1.2.7 A Lie group G is a manifold which is also a group, such that the map

G×G→ G, (x, y) 7→ x · y−1

is smooth.

In fact, for differentiable manifolds, if the group multiplication is a smooth map, then

one can prove the inverse map is also smooth, see [5]. Many classical Lie groups arise from

the matrix groups. For example the general linear group

GL(n) = {A ∈M(n)| detA 6= 0}

and the special linear group

SL(n) = {A ∈M(n)| detA = 1}

are both Lie groups.

Exercise 1.2.8 Show that SL(n) is a Lie group.

1.2.3 Submanifolds

The manifold F−1(c) in Theorem 1.2.5 is a subset of a larger manifold, which is called

a submanifold. We can also view submanifolds as the image of a map from a given base

manifold, as follows.

Definition 1.2.9 Suppose M,N is a m- and n-dimensional manifold respectively, and F :

M → N is a smooth map. If for all p ∈M , rankFp = m, then F is called an immersion of

M into N , and (M,F ) is called an immersed submanifold of N .
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By the Rank Theorem (Theorem 0.2.10), for any p ∈ M , there exists a local chart

(U, φ;x) and (V, ψ; y) such that locally the map has the form

y = ψ ◦ F ◦ φ−1(x) = (x, 0) ∈ Rm × Rn−m.

It follows that F : U → F (U) is injective and homeomorphic. However, an immersion is not

necessarily injective globally. Also, the topology of M need not be the same as the induced

topology on F (M) from N .

Example 1.2.10 1. Consider the curve F : R1 → R2 by

F (t) = (cos t, sin t) .

One checks F is a immersion, but it is not injective since it is periodic.

2. Consider the curve G : R1 → R2 by

G(t) =
(

2 cos(2 arctan t− π

2
), sin 2(2 arctan t− π

2
)
)
.

One checks G is a injective immersion. However, the induced subset topology on G(R1)

from R2 is different from the standard one on R1.

Thus we introduce the following definition. Recall that in the subset topology on

F (M) ⊂ N , an set U ⊂ F (M) is open iff it is the intersection of F (M) and an open

set in N .

Definition 1.2.11 Let F : M → N be a smooth immersed submanifold. If F is injective

and F : M → f(M) is a homeomorphism under the induced subset topology on F (M), then

F is called an embedding and (M,F ) is called an embedded submanifold of N .

A theorem in topology says that an injective continuous map from a compact space to

a Hausdorff space is a homeomorphism. As a consequence, we have

Theorem 1.2.12 Any injective immersion from a compact manifold M is an embedding.
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Again by the Rank Theorem 0.2.10, we have a local description of the image of an em-

bedded submanifold. The following theorem says that, in a suitable local chart, an embedded

submanifold can be realized as a hyperplane of same dimension.

Theorem 1.2.13 Suppose F : M → N is an injective immersion. Then F is an embedding

if and only if for any p ∈ M , there is a local chart (U, φ) containing q = f(p) such that

φ(q) = 0 and

F (M) ∩ U = {s ∈ U |φα(s) = 0,m+ 1 ≤ α ≤ n}.

Exercise 1.2.14 Let f : R1 → R2, t → (t, kt) be a line through the origin where k ∈ Qc is

an irrational number. Show that F = π ◦ f : R1 → T2 is an injective immersion but not

an embedding. Here T2 = R2/Z × Z is the 2 dimensional torus and π : R2 → T2 is the

projection map.

Using the above terminology, we can state a global version of Theorem 1.2.5 as follows.

Theorem 1.2.15 Suppose F : M → N is a smooth map of rank r, then for any q ∈ F (M),

the pre-image F−1(q) is a (m− r) dimensional embedded submanifold of M .

Exercise 1.2.16 Prove Theorem 1.2.15.

1.2.4 Embedding theorems

Submanifolds can be very complicated. Actually, any compact manifold can be embed-

ded into a sufficiently large dimensional Euclidean space. Therefore, the study of manifolds

can be alternatively developed by studying submanifolds in Euclidean spaces.

Theorem 1.2.17 Suppose M is a m-dimensional compact manifold, then there exists an

integer n such that M can be embedded into Rn.

Proof. Since M is compact, by Theorem 1.2.12, we only need to construct an injective

immersion.

Choose an atlas of finitely many local charts (Uλ;x
i
λ), 1 ≤ λ ≤ r, and open sets Vλ,Wλ,

such that V̄λ ⊂ Wλ ⊂ W̄λ ⊂ Uλ and {Vλ, 1 ≤ λ ≤ r} is a cover of M . Thus by Lemma 1.1.8,

there exists smooth cut-off functions fλ which equals 1 on Vλ and vanishes outside of Wλ.
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Now for n = r(m+ 1), we define a map F : M → Rn by defining n smooth functions as

components of F . For 1 ≤ i ≤ m and 1 ≤ λ ≤ r, let

y0
λ = fλ, yiλ =

xiλ(p) · fλ(p), p ∈ Uλ

0, p /∈ Uλ.

That is, we simply define yiλ by the coordinate chart multiplied with the cut-off function,

and add an extra coordinate y0
λ as an index. This map F takes each local chart to different

slices of the large Euclidean space Rn.

It remains to check that F is injective and is an immersion. First note that for any

p ∈M , there is some Vλ around p such that yiλ = xiλ(p), i = 1, · · · ,m. Thus the sub-matrix(
∂yiλ
∂xjλ

)
1≤i,j≤m

= Im

is invertible, hence F has rank m at p. Next if there is p1, p2 ∈ Uλ such that F (p1) = F (p2),

then we would have

y0
λ(p1) = fλ(p1) = y0

λ(p2) = fλ(p2)

and

yiλ(p1) = xiλ(p1) · fλ(p1) = yiλ(p2) = xiλ(p2) · fλ(p2).

It follows xiλ(p1) = xiλ(p2). Since xiλ is an coordinate chart, we have p1 = p2. Therefore, F is

injective and the proof is finished. �

The above theorem can be greatly improved. In fact, the assumption of compactness

can be replaced by paracompact, and the dimension n can be reduced to 2m + 1. This is

the famous Whitney’s embedding theorem.

Theorem 1.2.18 (Whitney’s theorem) Every differentiable m-dimensional manifold can

be embedded in (2m+ 1)-dimensional Euclidean space.

For a proof of this theorem, we refer to Chapter 1.22 in [2].
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2.1 Tangent vector and Tangent space

One of our main goals in differential manifolds is to perform derivations (on various

objects) on manifolds. Let’s first recall derivatives of functions on Euclidean spaces. Suppose

f : Rn → R1 is a smooth function, to define a derivative of f at some point x, we first specify

a direction (at x), which is just a vector v ∈ Rn, and then define the directional derivative

by

Dvf(x) = lim
h→0

f(x+ hv)− f(x)

h
.

However, on a manifold which in general is not a linear space, we don’t know what a vector is.

Thus the key to generalize the idea, is an equivalent yet more geometric concept of ’vectors’,

which represents ’directions’.

There are usually three ways to define the tangent space at a point of a manifold:

1. define the tangent vectors as equivalent classes of curves

2. define the tangent vectors as linear operators on functions

3. first define the cotangent vectors as equivalent classes of functions, then define the

tangent space as the dual space of cotangent space.

2.1.1 Tangent vectors as equivalent classes of curves

Recall that in mechanics, a vector is usually the velocity of some particle. The velocity

in turn can be regarded as an infestimal movement of that particle. Namely, if a point is

moving along a path γ : (a, b)→ R3, then the velocity at time t is γ′(t), which is the limit of

the average speed in a short time interval. Thus a velocity is associated with some trajectory,

as a vector is tangent to some curve in the space. However, the correspondence is not unique:

different curves may very well be tangent to the same vector.

Now let’s apply the ideas to our manifolds. Given a point p ∈M , we consider a particle

moving through p. In mathematics, we represent a path passing p as a curve γ : (−ε, ε)→M

with γ(0) = p. Then the velocity at t = 0 should give us a ’vector’. We think of this in the

opposite way: a ’vector’ (though not defined yet) could be represented by a curve (which

we already know how to define). The method should work as long as we keep one thing in
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TpM

M

v = [γ]p

p

γ

Figure 2.1: tangent space

mind: different curves passing p with the same velocity represents the same vector. This

leads to our first definition of a tangent vector.

We say two curves β and γ passing p are equivalent if, under a local chart (U, φ) at p,

d

dt

∣∣∣
t=0

(φ ◦ γ) =
d

dt

∣∣∣
t=0

(φ ◦ β).

Definition 2.1.1 The equivalent class [γ]p of a smooth curve γ passing p is called a tangent

vector at p ∈ M . The space of all possible tangent vectors at p is called the tangent space

of p, and is denoted by TpM .

The equivalence relationship is independent of the choice of local charts, since the deriva-

tives in different charts only differs by an invertible linear transformation. Thus the tangent

vector given by the equivalent class [γ]p is well-defined. See Figure 2.1.

2.1.2 Tangent vectors as linear maps

The definition of tangent vectors induces a natural action of a tangent vector on a

smooth function, namely, by directional derivative. More specifically, given a tangent vector

v = [γ]p ∈ TpM and a smooth function f at p, we define

v · f =
d

dt

∣∣∣
t=0

(f ◦ γ) = lim
t→0

f(γ(t))− f(p)

t
.

This leads to the second definition of tangent vectors as follows.
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Definition 2.1.2 A tangent vector at p ∈ M is a linear map Xp : C∞(M) → R1 which

satisfies the Leibnitz rule

Xp(f · g) = f(p) ·Xpg + g(p) ·Xpf.

Obviously, the directional derivative on smooth functions induced by a tangent vector

defined in Definition 2.1.1 satisfies the Leibnitz rule. Therefore, for any [γ]p ∈ TpM in

Definition 2.1.1, we can define a linear map Xp as in Definition 2.1.2 by

Xp(f) = [γ]p · f =
d

dt

∣∣∣
t=0

(f ◦ γ).

On the other hand, any linear map Xp in Definition 2.1.2 can be realized as an equivalent

class [γ]p of smooth curves through p as in Definition 2.1.1. To do this, we choose a local

chart (U ;xi) at p and find a simplest curve, i.e. a straight line, as a representative of [γ]p.

In fact, if the action of Xp on the i-th coordinate function is

Xp(x
i) = ai ∈ R1,

Then we can define a line γ by

xi ◦ γ(t) = ait+ xi(p), 1 ≤ i ≤ n.

Finally, to show the equivalence of the two definitions of tangent vectors, we only need

to show that the above two mappings are inverse of each other, which is left to the readers.

2.1.3 Tangent space

Given a local chart (U, φ) with φ(p) = 0, there is a natural set of tangent vectors in

TpM given by the coordinate axes at p. More specifically, for each 1 ≤ i ≤ n, let γi be the

smooth curve through p such that φ(γi) is just the i-th axis. That is, we require

xj ◦ γi(t) = δijt, 1 ≤ j ≤ n.
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where

δij =

0, i 6= j;

1, i = j.

is the Kronecker symbol. Then we define the tangent vectors

∂

∂xi

∣∣∣
p

:= [γi]p, 1 ≤ i ≤ n.

By definition, for a smooth function f ∈ C∞(M), we have

∂

∂xi

∣∣∣
p
· f =

d

dt

∣∣∣
t=0

(f ◦ γi)

=
n∑
j=1

∂

∂xj

∣∣∣
x=x0

(f ◦ φ−1) · d
dt

∣∣∣
t=0

(xj ◦ γi)

=
∂

∂xi
(f ◦ φ−1)(x0).

One checks that { ∂
∂xi
|p} forms a basis of the tangent space TpM , which is called the

natural frame. Actually, for any tangent vector X ∈ TpM and ai = X(xi) ∈ R1, 1 ≤ i ≤ n,

we have

X = a1 ∂

∂x1

∣∣∣
p

+ · · ·+ an
∂

∂xn

∣∣∣
p

= ai
∂

∂xi

∣∣∣
p
.

Here we adopt Einstein’s convention of summations. That is, when the index i appears twice

(usually as subscript on the top and bottom), then we take the summation for i = 1, · · ·n.

Clearly, the definitions works fine on Euclidean spaces: the tangent vector ∂
∂xi

∣∣
p

is just

the i-th unit vector along xi-axis. But on a general manifold, there is a major difference here:

the tangent spaces TpM and TqM at different points p, q ∈ M are essentially different. To

be more precise, although they are linear spaces of the same dimension, there is no canonical

way of identifying them (like the parallel translation in Euclidean space). Thus a tangent

vector at p can not be viewed as a tangent vector at q 6= p.

Exercise 2.1.3 Prove that the tangent space TpM is an n-dimensional vector space by show-

ing that the tangent vectors { ∂
∂xi

∣∣
p
}1≤i≤n forms a basis.

Since we often need to transform from a local chart to another, it is very important to

record how the natural frames transforms under change of local charts.
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Suppose (U, φ;xi) and (V, ψ; yi) are two local charts on M such that U ∩ V 6= ∅. Then

for p ∈ U ∩ V there are two sets of basis { ∂
∂xi
|p}, { ∂

∂yi
|p} ⊂ TpM . Recall that for a smooth

function f ∈ C∞(M),
∂

∂xi

∣∣∣
p
· f =

∂

∂xi
(f ◦ φ−1)(x0).

Similarly, for y0 = ψ(p),
∂

∂yi

∣∣∣
p
· f =

∂

∂yi
(f ◦ ψ−1)(y0).

But on U ∩ V , we have x = x(y) = φ ◦ ψ−1(y). Thus

∂

∂yi
(f ◦ ψ−1)(y0) =

∂

∂yi
[(f ◦ φ−1) ◦ (φ ◦ ψ−1)](y0)

=
∂

∂xj
(f ◦ φ−1)(x0) · ∂x

j

∂yi
(y0)

=
∂xj

∂yi
(y0)

∂

∂xj

∣∣∣
p
· f

Since the equality holds for any f ∈ C∞, we obtain

∂

∂yi

∣∣∣
p

=
∂xj

∂yi
(y0)

∂

∂xj

∣∣∣
p
.

Exercise 2.1.4 Let {vi}ni=1 ∈ TpM be a basis of tangent vectors at p. Show that there is a

local chart (U, φ;xi) around p such that

vi =
∂

∂xi

∣∣∣
p
, i = 1, · · · , n.

2.1.4 Cotangent space

Yet another method to define the tangent space is to first define its dual space by

equivalent classes of smooth functions, as follows. For f, g ∈ C∞(M), we define equivalent

relation f ∼ g if in a local chart (U, φ),

d(f ◦ φ−1)|p = d(g ◦ φ−1)|p.
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Note that the equivalent relation is well-defined since it is independent of the choice of local

charts. Now we define the cotangent space at p by

T ∗pM = C∞(M)/ ∼= {[f ]p|f ∈ C∞(M)}.

Note that in the above definition, we can replace the space of global functions C∞(M) by

locally defined functions C∞p (M). Obviously, the cotangent space inherits a linear structure

from C∞(M), once we define

λ[f ]p + µ[g]p = [λf + µg]p, ∀λ, µ ∈ R1, f, g ∈ C∞(M).

In a local chart (U, xi), there is a natural choice of cotangent vectors given by the

equivalent class of coordinate functions

dxi|p := [xi]p, i = 1, · · · , n.

We usually denote the equivalent class of f ∈ C∞(M) by df |p = [f ]p ∈ T ∗pM . Since in a

local chart

d(f ◦ φ−1) =
∂

∂xi
(f ◦ φ−1)(x0)dxi,

it follows that

df |p =
∂

∂xi
(f ◦ φ−1)(x0)dxi|p.

There is a natural pairing between the cotangent space T ∗pM and the tangent space

TpM as follows. For any tangent vector [γ]p = vi ∂
∂xi
|p ∈ TpM , we let

(df |p, [γ]p) = [γ]p · f =
d

dt

∣∣∣
t=0

(f ◦ γ) = vi
∂

∂xi
(f ◦ φ−1)(x0).

Theorem 2.1.5 The cotangent space T ∗pM is the dual space of the tangent space TpM . In

a local chart (U, xi), {dxi|p} ⊂ T ∗pM is a dual basis of { ∂
∂xi
|p} ⊂ TpM .

Exercise 2.1.6 Prove Theorem 2.1.5.

Exercise 2.1.7 Show that under a change of local charts, the natural basis of the cotangent
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space T ∗pM transforms by

dxi|p =
∂xi

∂yj
(y0)dyj|p.

2.1.5 Tangent map

The tangent map is a natural generalization of the full derivatives of functions between

Euclidean space. Recall that for a vector valued multi-variable function F : Rm → Rn, the

derivative

DF =

(
∂fα

∂xi

)
1≤i≤m,1≤α≤n

is a (Jacobian) matrix, which can also be viewed as a linear map.

A tangent vector can also act on a smooth map between manifolds, which should be

compared to directional derivative of vector valued functions. Let F : M → N be a smooth

map and v = [γ]p ∈ TpM be a tangent vector. Note that F maps a curve γ passing p in M

to a curve F ◦γ passing q := F (p) in N . One can verify that F actually maps the equivalent

class [γ]p to a equivalent class [F ◦ γ]q in TqN . In other words, for a smooth function g at q,

the action

[F ◦ γ]q · g =
d

dt

∣∣∣
t=0

(g ◦ F ◦ γ)

is independent of the choice of representatives in [γ]p. Thus the map from [γ]p to [F ◦ γ]q,

which is introduced by F , is well-defined. We call this map the tangent map of F at p, and

denote it by (F∗)|p or dF |p. Therefore, we define the derivative of v on F by

v · F = [γ]p · F = dF |p(v) = [F ◦ γ]q ∈ TqN.

That is, the tangent map dF |p pushes forward a tangent vector v ∈ TpM to a tangent vector

dF |p(v) ∈ TqN . See Figure 2.2.

It is easy to see that the tangent map dF |p of F : M → N is a linear map from TpM to

TqN . Given two basis of the two tangent spaces, dF |p can be realized as a m×n matrix. In

fact, for two local charts (U, φ;xi) on M and(V, ψ; yα) on N containing p and q respectively,

we have
∂

∂xi

∣∣∣
p
· F = [F ◦ γi]q = aαi

∂

∂yα

∣∣∣
q
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TpM

M

v = [γ]p

p

γ

TqN

N

dF (v) = [F ◦ γ]q

q = F (p)

F ◦ γ

F

Figure 2.2: Tangent map

for some numbers aαi ∈ R1. Since for g ∈ C∞(N), by the chain rule,

[F ◦ γi]q · g =
d

dt

∣∣∣
t=0

(g ◦ F ◦ γi)

=
∂

∂xi
(g ◦ F ◦ φ−1)(x0)

=
∂

∂xi
[(g ◦ ψ−1) ◦ (ψ ◦ F ◦ φ−1)](x0)

=
∂

∂yα
(g ◦ ψ−1)(y0) · ∂

∂xi
(ψ ◦ F ◦ φ−1)α(x0)

If we denote the function y = y(x) = ψ ◦ F ◦ φ−1(x), then we arrive at

dF |p
(
∂

∂xi

∣∣∣
p

)
=

∂

∂xi

∣∣∣
p
· F =

∂yα

∂xi
(x0)

∂

∂yα

∣∣∣
q
.

and the matrix is given by

A = (aαi ) =

(
∂yα

∂xi
(x0)

)
, 1 ≤ i ≤ m, 1 ≤ α ≤ n.

We call the rank of the matrix A the rank of F at p, which is well-defined since it is

invariant under change of coordinate charts.
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2.1.6 Pull-back map

Recall that for any linear map between two vector spaces L : V → W , there is a dual

linear map L∗ : W ∗ → V ∗ defined by the identity

(Lv,w∗) = (v, L∗w∗), ∀v ∈ V,w∗ ∈ W ∗.

The derivative of a smooth map F : M → N also induces a linear map between cotangent

spaces. More precisely, let p ∈M and q = F (p) ∈ N , then for any f ∈ C∞(N), f ◦F defines

a smooth function on M . This leads to a linear map

F ∗|p : T ∗qN → T ∗qM, [f ]q → [f ◦ F ]p.

The map F ∗ is called a pull-back map, since it pulls a cotangent vector in T ∗qN to a cotangent

vector in T ∗pM .

By a similar computation as the push-forward map, we find that, in local coordinates

(U ;xi) in M and (V ; yα) in N ,

F ∗p (dyα|q) =
∂yα

∂xi
(x0)dxi|p.
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2.2 Tangent bundle and Vector fields

In last section, we define the tangent vector and tangent space TpM at a fixed point

p ∈M . Now we want to let p vary and consider a tangent vector field X on M . That is, X

assigns a tangent vector in TpM for every point p ∈M .

2.2.1 Tangent bundle

Consider the disjoint union of all tangent spaces of a manifold

TM = ∪p∈MTpM.

There is a natural topological and differentiable structure on TM induced by that of M .

First we consider the projection

π : TM →M,π(Xp) = p,∀Xp ∈ TpM.

Obviously, π−1(p) = TpM for all p ∈ M . For a coordinate chart (U, φ;xi) on M , there is a

so-called local trivialization

Φ : π−1(U)→ U × Rn, Xp → (p,Xp(x
1), · · · , Xp(x

n)).

That is, if Xp = ai ∂
∂xi
|p ∈ TpM in the natural local frame, then

Φ(Xp) = (p, a1, · · · , an).

This is an bijection and thus induces a topology on the tangent bundle TM , such that Φ

is a homeomorphism. In other words, we say V ⊂ TM is an open set in TM if the set

Φ(V ∩ π−1(U)) is open in U × Rn for all local charts on M .

Exercise 2.2.1 Check that the induce topology on TM is second countable and Hausdorff.

In fact, the tangent bundle is a 2n-dimensional differentiable manifold. To see this, we

only need to construct an atlas. Let {(Uα, φα)}α∈I be an atlas of M , and Φα be the local
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trivialization corresponding to (Uα, φα). Then one checks that an atlas on TM is given by

{(Ũα, Φ̃α) = (π−1(Uα), (φα, id) ◦ Φα)}α∈I .

Indeed, for two local charts (U, φ;x) and (V, ψ; y) on M . Recall that at any point

p ∈ U ∩ V , we have
∂

∂xi
=
∂yj

∂xi
∂

∂yj
.

Thus for (x, v) ∈ Φ̃(Ũ ∩ Ṽ ) ⊂ Rn × Rn, we have

Ψ̃ ◦ Φ̃−1(x, v) = Ψ̃

(
vi

∂

∂xi

)
= Ψ̃

(
vi
∂yj

∂xi
∂

∂yj

)
= (y(x), gx(v)),

where y(x) = ψ ◦ φ−1(x) and the transition map

gx =

(
∂yj

∂xi
(x)

)
1≤i,j≤n

∈ GL(n),∀x ∈ U ∩ V.

Definition 2.2.2 The differentiable manifold TM defined as above is called the tangent

bundle of M .

In a similar way, we can define the cotangent bundle T ∗M = ∪p∈MT ∗M , which is also

a 2n-dimensional differentiable manifold.

Exercise 2.2.3 Construct an atlas on the cotangent bundle T ∗M .

2.2.2 Tangent fields

One should be familiar with the notion of vector fields, which appears in classical physics.

By definition, a vector field on Ω ⊂ Rn is just a vector valued function X : Ω → Rn. For

example the velocity field of fluids, the electric field and the magnetic field in R3. Here we

can regard tangent vector fields on manifolds as a generalization of vector fields on Euclidean

spaces. An example is the velocity field of wind on the earth, which is a vector field on the

2-sphere S2.
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Definition 2.2.4 A tangent vector field is a smooth map X : M → TM such that

π ◦X(p) = p, ∀p ∈M.

The space of all tangent vector field is denoted by X(M) = Γ(TM).

Intuitively, a tangent vector field assigns a tangent vector to each point in a smooth

way. Given a local chart (U, φ;xi), the coordinate functions give a natural local frame

∂i :=
∂

∂xi
: p→ ∂

∂xi

∣∣∣
p
∈ TpM, i = 1, · · · , n.

Thus the restriction of a tangent vector field X ∈ X(M) on U can be written as

X|U = X1 ∂

∂x1
+ · · ·Xn ∂

∂xn
= X i∂i,

where X i : U → R1 are smooth functions.

Via the directional derivative, a tangent vector field X ∈ X(M) acts on a smooth

function f ∈ C∞(M) by

X(f) : p→ X(p) · f ∈ R1, ∀p ∈M,

which gives a linear map

X : C∞(M)→ C∞(M), f 7→ X(f).

Obviously, this map satisfies the Leibnitz rule

X(f · g) = X(f) · g + f ·X(g), ∀f, g ∈ C∞(M).

Conversely, a linear map satisfying the Leibnitz rule can be realized as a tangent vector field.

A tangent vector field X ∈ X(M) can also act on a smooth map F : M → N by

F∗(X) = X(F ) : p→ X|p · F = dF (Xp) ∈ TF (p)N.
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We call F∗ the tangent map of F , or push-forward. In local coordinates (U ;xi) on M and

(V ; yα) on N , we have

F∗(X) = dF

(
X i ∂

∂xi

)
= X i∂F

α

∂xi
∂

∂yα
.

Similarly, we can define cotangent vector fields in the cotangent bundle T ∗M . Then F

induces a pull-back map F ∗ on cotangent vector fields.

Form now on, we will simply call a tangent vector field by vector field. Unlike the

Euclidean space, generally there does not exist a ”constant” vector field on a non-trivial

tangent bundle. For example, the famous Poincaré-Hopf theorem says that there is no non-

vanishing tangent vector field on S2.

2.2.3 Vector bundles

The concept of tangent bundles can be greatly generalized to general vector bundles.

Intuitively, a vector bundle is just a family of vector spaces attached to a manifold, which is

glued together in a specific way. More precisely, we define

Definition 2.2.5 A vector bundle (E,M, π) of rank r consists of a bundle space E, a base

manifold M and a projection π : E →M such that

1. For all p ∈M , the fiber Ep := π−1(p) is isomorphic to Rr

2. For all p ∈ M , there exists a neighborhood U ⊂ M and a local trivialization, i.e. a

diffeomorphism

Φ : π−1(U)→ U × Rr

where the restriction of Φ on Ep is linear.

3. The map Φ satisfies

π ◦ Φ−1(p, v) = p, ∀p ∈M, v ∈ Rr.

Suppose there are two local charts (U, φ) and (V, ψ) on M , and two local trivialization

maps

Φ : π−1(U)→ U × Rn,Ψ : π−1(V )→ V × Rn.
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Then they are glued together by

Ψ ◦ Φ−1 = (π1, g) : (U ∩ V )× Rn → (U ∩ V )× Rn.

Here π1 is the projection to the first variable, and the transition map gp = g(p, ·) : Rn → Rn

is linear for all p ∈ U ∩ V .

A key point in the definition of vector bundles is the linear structure of the fiber space,

and that the transition maps keep the linear structure. Actually, one can alternatively define

a vector bundle by using the transition maps.

Theorem 2.2.6 Suppose M is a manifold with an open cover {Uα}α∈I . If for all α, β ∈ I,

there is a smooth map

gαβ : Uα ∩ Uβ → GL(r),

such that for all α, β, γ ∈ I,

• gαα = Ir;

• gαβ · gβγ = gαγ.

then there exists a vector bundle (E,M, π) whose transition maps are exactly {gαβ}α,β∈I .

It follows from the definition that gαβ = g−1
βα ,∀α, β ∈ I.

Example 2.2.7 1. The tangent bundle of S1 is a trivial bundle TS1 = S1 × R1.

2. The Möbius band M is a non-trivial bundle on S1, which is constructed as follows.

First identify S1 ' T1 = R1/Z1. Then take U = [(0, 2π)], V = [(−π, π)] ⊂ S1 and let

Ũ = U × R1, Ṽ = V × R1. Define the transition map g : U ∩ V → GL(1) by

g(θ) =

1, θ ∈ [(0, π)]

−1, θ ∈ [(π, 2π)].

Then the Möbius band is glued byM = (Ũ∪Ṽ )/g. Namely, we identify points (θ1, v1) ∈
Ũ and (θ2, v2) ∈ Ṽ if θ1 = θ2 and v2 = g(θ1) · v1.
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Definition 2.2.8 A section of a vector bundle (E,M, π) is a smooth map s : M → E such

that π ◦ s = idM . The space of all sections is denoted by Γ(E).

In other words, for any p ∈M , a section s takes value s(p) ∈ Ep. In a local trivialization,

s is equivalent to a smooth map u : U → Rn such that

Φ ◦ s(p) = (p, u(p)),∀p ∈ U.

From the definition, we can see that locally, a fiber bundle has a product space structure

by the local trivialization map. However, in general, a vector bundle is not a product space

globally. If there is a global trivialization Φ : E →M ×Rn, then E is called a trivial bundle.

In fact, we have

Theorem 2.2.9 A vector bundle (E,M, π) of rank r is trivial if and only if there exists r

linear independent sections {X1, · · · , Xr} ⊂ Γ(E).

Exercise 2.2.10 Try to prove that there is no non-vanishing section on the Mobiüs bandM
(viewed as a vector bundle over S1). That is, for all section s ∈ Γ(M), there exists θ ∈ S1

such that s(θ) = 0.
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2.3 Lie derivative

2.3.1 1-parameter group of diffeomorphisms

Think of wind velocity (assuming it is constant in time) on the surface of the earth as

a vector field on the sphere S2 . There is another interpretation we can make by tracking

trajectories of particles. A particle at position x ∈ S2 moves after time t seconds to a position

ϕt(x) ∈ S2 . After a further s seconds it is at

ϕt+s(x) = ϕs ◦ ϕt(x).

What we get this way is a homomorphism of groups: from the additive group R1 to the

group of diffeomorphisms of S2 under the operation of composition. The technical definition

is the following:

Definition 2.3.1 A one-parameter group of diffeomorphisms of a manifold M is a smooth

map

ϕ : M × R1 →M, (x, t) 7→ ϕt(x)

such that

• ϕt : M →M is a diffeomorphism for every t

• ϕ0 = idM

• ϕs+t = ϕs ◦ ϕt.

We will show that vector fields generate one-parameter groups of diffeomorphisms lo-

cally, and vice versa. Thus we can interpret vector fields as ”infinitesimal diffeomorphisms”

rather than as abstract derivations of functions.

First we want to generate a vector field from an one-parameter groups of diffeomor-

phisms ϕt. For any x ∈ M , the map γx(t) = ϕt(x) : R1 → M gives a smooth curve through

x. Then by our first definition of tangent vectors, γx induces a tangent vector [γx] ∈ TxM
such that for any smooth function f ∈ C∞(M),

[γx] · f =
∂

∂t

∣∣∣
t=0
f(γx(t)).
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So as x varies we have a vector field X ∈ Γ(TM) with X(x) = [γx]. In local coordinates, if

we write y = y(x, t) = ϕt(x), then

X(f)(x) =
∂

∂t

∣∣∣
t=0
f(ϕt(x)) =

∂f

∂yi
(y)

∂yi

∂t
(x)
∣∣∣
t=0
.

Since y = ϕ0(x) = x at t = 0, it follows

X(x) =
d

dt
(xi ◦ ϕt(x))

∣∣∣
t=0

∂

∂xi
:=

d

dt
ϕt(x)

∣∣∣
t=0
.

2.3.2 Integral curve

Next we want to reverse the above: go from a vector field X ∈ Γ(TM) to the diffeo-

morphism. We start from tracking the “trajectory” of a single particle along the vector

field.

Definition 2.3.2 An integral curve of a vector field X is a smooth curve γ : I → M such

that

dγ

(
d

dt

)
=
dγ

dt
(t) = X(γ(t)),∀t ∈ I.

That is, X coincides with the tangent vector generated by the curve γ. By solving the

above ordinary differential equation in a local chart, we can get a local integral curve for the

vector field. Next we patch local solutions together to get a maximal one.

Theorem 2.3.3 Given a vector field X ∈ Γ(TM) and p ∈M , there exists an integral curve

γp : I →M through p with maximal defining interval I.

Proof. First consider a local chart (U, φ) around p. Suppose that in this chart, we have

X = X i∂i. Then the equation of integral curve can be written as

d

dt
x(t) = X(x(t)).

Then the basic theorem of ODE asserts that there is a unique solution x(t) on an interval

[0, T ) with initial data x(0) = φ(p). This gives an integral curve in the chart U .

Now suppose γp : I →M is any integral curve with γp(0) = p (not necessarily the same

as the one we just constructed). For each τ ∈ I, the subset γp([0, τ ]) ⊂ M is compact, so
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we can cover it by finite number of coordinate charts, in each of which we again apply the

basic theorem of ODE. Uniqueness implies that all possible solutions agree with γp on any

subinterval containing 0.

Finally we take the integral curve with maximal defining open interval. �

Note that the maximal interval might not be the whole R1 if the manifold is not compact

(e.g. a open disk D2 ⊂ R2). To find the one-parameter group of diffeomorphisms we now let

p ∈M vary.

Theorem 2.3.4 Let X ∈ Γ(TM) be a vector field and for x ∈ M , let ϕt(x) = γx(t) be the

maximal integral curve of X through x. Then

1. the map (t, x)→ ϕt(x) is smooth

2. ϕt ◦ ϕs = ϕt+s wherever the maps are defined

3. if M is compact, then ϕt(x) is defined on R1 ×M and gives a one-parameter group of

diffeomorphism.

Proof.

1. The smoothness follows directly from the smooth dependence of the solution of ODEs

on the initial value by the theorem of ODE.

2. First we check that for any x ∈M , the maps ϕt ◦ϕs(x) and ϕt+s both gives an integral

curve through y = ϕs(x). Then the conclusion follows from the uniqueness part of the

ODE theorem.

3. Since M is compact, we can find a finite number of open sets {Ui}Ki=1 such that a

smaller compact set Vi ⊂ Ui still covers M . For each x ∈ Vi, the defining interval Ix of

the integral curve ϕ̃t(x) = γx(t) depends smoothly on x. Thus we can find a positive

number Ti > 0 such that ϕ̃t is defined on [−Ti, Ti] × Vi. Let T = min1≤i≤K{Ti}, then

the map ϕ̃t is well-defined on [−T, T ]×M .

Finally we want to extend ϕ̃t to the whole R1. To do this, for any t ∈ R1, choose n ∈ Z
such that |t/n| ≤ T , then we define

ϕt(x) = ϕ̃t/n ◦ · · · ◦ ϕ̃t/n(x) = [ϕ̃t/n]n(x).
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One checks that this map still satisfies property (2).

�

2.3.3 Lie bracket

Given two vector fields X, Y ∈ X(M) viewed as linear maps on C∞(M), we can consider

the composition X ◦ Y and Y ◦X. In other words, we consider the double derivatives of a

function along two vector fields. However, the composition of two vector fields are not vector

fields, since

X ◦ Y (fg) = X(f(Y g) + (Y f)g) = (Xf)(Y g) + f(XY g) + (Xg)(Y f) + g(XY f),

Y ◦X(fg) = Y (f(Xg) + (Xf)g) = (Y f)(Xg) + f(Y Xg) + (Y g)(Xf) + g(Y Xf).

Namely, they do not satisfy the Leibnitz rule. However, it is easy to see that their difference

X ◦ Y − Y ◦X does. This leads to the following definition:

Definition 2.3.5 The Lie bracket of vector fields is a linear map

[·, ·] : X(M)× X(M)→ X(M)

given by

[X, Y ] = X ◦ Y − Y ◦X.

In local coordinates, if X = X i∂i, Y = Y i∂i, then by definition

[X, Y ]f = X i∂i(Y
j∂jf)− Y j∂j(X

i∂if) = X i∂iY
j∂jf − Y j∂jX

i∂if.

Thus we get

[X, Y ] = (X i∂iY
j − Y i∂iX

j)∂j.

In particular, we have [∂i, ∂j] = 0,∀1 ≤ i, j ≤ n.

Exercise 2.3.6 Suppose F : M → N is a diffeomorphism and X, Y ∈ X(M) are tangent

vector fields on M . Prove that

F∗[X, Y ] = [F∗X,F∗Y ].
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One checks that the Lie bracket is bi-linear and satisfies

• skew-symmetry

[X, Y ] = −[Y,X]

• the Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

A vector space with a Lie bracket operation satisfying the two properties is called a Lie

algebra. An elementary example is the familiar R3 with Lie bracket given by the cross

product. A rich source of Lie algebra comes from the tangent space of Lie groups.

2.3.4 Lie derivative

The composition of two vector fields or double derivatives of a function raises the prob-

lem of derivation of a vector field on a manifold. With the help of 1-parameter group of

diffeomorphisms, we can naturally generalizes the usual concept of derivation of vector fields

(i.e. vector valued functions) in Euclidean spaces to manifolds.

Definition 2.3.7 Let X, Y ∈ X(M) be two vector fields, and ϕt be the 1-parameter group

of diffeomorphisms generated by X. The Lie derivative of Y with regard to X is defined by

LXY =
d

dt

∣∣∣
t=0

(ϕ−t)∗ ◦ Y ◦ φt = lim
t→0

(ϕ−t)∗ ◦ Y (ϕt(x))− Y (x)

t
.

It turns out that the Lie derivative is exactly the Lie bracket, i.e. the commutator, of

two vector fields.

Theorem 2.3.8 For any vector fields X, Y ∈ X(M), we have

LXY = [X, Y ].

Proof. [Proof 1.] In local coordinates, suppose X = ai ∂
∂xi

and Y = bi ∂
∂xi

. Let ϕt by the

1-parameter group of diffeomorphisms generated by X and y = ϕt(x). Then by definition
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M

x

y = ϕt(x)
X(x)

Y (y)

Y (x)

(ϕ−t)∗(Y (y))

ϕt

ϕ−t

TxM
TyM

Figure 2.3: Lie Derivative

∂tϕt|t=0 = X and

LXY (x) =
d

dt

∣∣∣
t=0

(ϕ−t)∗(b
i(y)

∂

∂yi
)

=
d

dt

∣∣∣
t=0
bi(y)

∂ϕ−t
∂yi

=
∂bi

∂yj
dyj

dt

∂ϕ−t
∂yi

∣∣∣
t=0

+ bi(y)
d

dt

(
∂ϕ−t
∂yi

) ∣∣∣
t=0

=
∂bi

∂xj
aj

∂

∂xi
− bi∂a

j

∂xi
∂

∂xj
.

Here in the first term, we use the fact that ϕ0 = id, while we interchange the derivatives of

the second term. �

Proof. [Proof 2.] For any x ∈M , let y = ϕt(x) and

Yt(x) := (ϕ−t)∗ ◦ Y (y) ∈ TxM

be a time-dependent tangent vector at x, then by definition

LXY (x) =
d

dt

∣∣∣
t=0
Yt(x),
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But for a smooth function f near x,

Yt(x) · f = Y (y) · ϕ∗−tf =
[
Y · (f ◦ ϕ−t)

]
(y)

Differentiating the above equation at t = 0, we get

LXY · f = X · (Y · f) + Y · (−X · f) = [X, Y ]f.

�

Remark 2.3.9 The Lie derivative satisfies the following Leibnitz rule

X · (Y · f) = LXY · f + Y · (X · f).

Compare to general affine connection,

∇X∇Y f = ∇X〈∇f, Y 〉 = 〈∇X∇f, Y 〉+ 〈∇f,∇XY 〉 = ∇2
X,Y f +∇∇XY f.

It follows that

∇2
X,Y f −∇2

Y,Xf = ∇X∇Y f −∇Y∇Xf −∇∇XY f +∇∇YXf

= X ◦ Y · f − Y ◦X · f − (∇XY ) · f + (∇YX) · f

= [X, Y ] · f − (∇XY −∇YX) · f

Thus the connection is torsion free if and only if the Hessian of any function is symmetric.
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2.4 Frobenius theorem

2.4.1 Distributions

The integral curves can be viewed as the integration of vector fields, which can be

compared to the indefinite integral of functions on Euclidean spaces. That is, we integrate

the derivative (tangent vector field) to get a family of anti-derivatives (integral curves), which

is also equivalent to the one-parameter group of diffeomorphisms.

Here we want to generalized the integration to higher dimensions. Namely, we want to

consider the integration of a collection of vector fields.

Definition 2.4.1 • A rank k distribution D of a manifold M is a map D which assigns

a k-dimensional subspace D(p) ⊂ TpM at every point p ∈M .

• If for all p ∈M , there exists a neighborhood U and local smooth vector fields X1, · · · , Xk

such that D(q) is spanned by X1(q), · · · , Xk(q),∀q ∈ U , then we say D is smooth.

• For a vector field X ∈ Γ(TM), if X(p) ∈ D(p) for all p ∈M , then we denote X ∈ D.

If for any X, Y ∈ D, we have [X, Y ] ∈ D, then D is called involutive or integrable.

• Let N ⊂M be an imbedded submanifold, if for all p ∈ N , we have

TpN = D(p),

then N is called an integral manifold of D.

We will always assume the smoothness of distributions.

Obviously, k linear independent vector fields generates a rank k distribution. Note that

for a smooth rank k smooth distribution D, in general we can not find global smooth vector

fields X1, · · · , Xk which generate D. An easy example is the tangent bundle of S2. Thus a

rank 1 distribution D is not necessarily generated by a vector field X. But when it is, the

integral curves of X are integral manifolds of D.

2.4.2 Frobenius theorem

It is easy to see that if for all p ∈M , there exists an integral manifold of D through p,

then D is involutive. Conversely, we have the following Frobenius theorem.
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Theorem 2.4.2 (Frobenius Theorem) Suppose D is a rank k smooth distribution on a

manifold M . Then D is involutive if and only if there is a local integral manifold of D at

each point.

It is easy to see that if D is generated by integral manifolds, then it is involutive. To

prove the inverse statement, we first need two lemmas.

Lemma 2.4.3 Suppose D is an involutive distribution of rank k, then for any p ∈M , there

exists a neighborhood U and k vector fields X1, · · · , Xk ∈ D which span D and

[Xa, Xb] = 0,∀1 ≤ a, b ≤ k.

Proof. In a local chart around p, choose Ya = Y i
a∂i, a = 1, · · · , k which spans D. Since

Y1, · · · , Yk are linear independent, the matrix (Y i
a )k×m has rank k. Without loss of generality,

we may assume its submatrix (Y b
a )k×k is invertible with inverse (Aba)k×k. Now let

Xb = AabYa = ∂b + AabY
α
a ∂α,

where α is an index from k + 1 to m. We claim that [Xa, Xb] = 0,∀1 ≤ a, b ≤ k.

A simple computation shows

[Xa, Xb] = Cα
ab∂α,∀1 ≤ a, b ≤ k,

for some Cα
ab. On the other hand, sinceD is involutive and the linear independentX1, · · · , Xk ∈

D also forms a basis of D, for any 1 ≤ a, b ≤ k, we can find coefficients Dc
ab, 1 ≤ c ≤ k such

that

[Xa, Xb] = Dc
abXc = Dc

ab(∂c + AacX
α
a ∂α).

Comparing the above two identities, we find Dc
ab = 0 and the lemma is proved. �

Lemma 2.4.4 Suppose ϕt and σs are one-parameter groups of diffeomorphisms which are

generated by vector fields X, Y respectively. Then [X, Y ] = 0 if and only if

ϕt ◦ σs = σs ◦ ϕt.
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Proof. Firstly, if the identity holds, then by taking derivatives on both side with respect

to t = 0 and s = 0, we find [X, Y ] = 0.

Conversely, suppose [X, Y ] = 0, we want to prove the identity, which is equivalent to

σs = (ϕt)
−1 ◦ σs ◦ ϕt = ϕ−t ◦ σs ◦ ϕt.

Note that, for any fixed t, both sides of the above identity are one-parameter groups of

diffeomorphisms (w.r.t. parameter s). Thus to prove the identity, we only need to show

their corresponding vector fields coincide, i.e.

Y = (ϕ−t)∗ ◦ Y ◦ ϕt.

Denote Yt = (ϕ−t)∗ ◦ Y ◦ ϕt. By assumption, and definition of Lie derivative,

[X, Y ] = LXY =
d

dt

∣∣∣
t=0
Yt = 0.

By the group property of ϕt, we have

Yτ+t = (ϕ−τ )∗ ◦ (ϕ−t)∗ ◦ Y ◦ ϕt ◦ ϕτ = (ϕ−τ )∗ ◦ Yt ◦ ϕτ .

Thus we compute for arbitrary τ ,

d

dt

∣∣∣
t=τ
Yt =

d

dt

∣∣∣
t=0
Yτ+t

=
d

dt

∣∣∣
t=0

(ϕ−τ )∗ ◦ Yt ◦ ϕτ

= (ϕ−τ )∗ ◦ LXY ◦ ϕτ = 0

Therefore, Yt = Y0 = Y is constant and the proof is finished. �

Now we are ready to prove the Frobenius Theorem.

Proof. [Proof of Theorem 2.4.2] Suppose D is an involutive distribution of rank k, we need

to show that near each point p ∈M , there is an integral submanifold of D .
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Let (U, φ;xi) be a local chart around p such that φ(p) = 0. By Lemma 2.4.3, there

exists local vector fields X1, · · · , Xk ∈ D such that [Xa, Xb] = 0 and

{X1, · · · , Xk, ∂k+1, · · · , ∂m}

forms a local basis of TU . Let ϕa be the one-parameter group of diffeomorphisms generated

by Xa, 1 ≤ a ≤ k. Then we define a map Φ : Ik × Ω→ U by

Φ(t1, · · · , tk, xk+1, · · · , xm) = ϕ1
t1
◦ · · · ◦ ϕktk(q),

where q = φ−1(0, · · · , 0, xk+1, · · · , xn) and Ω ⊂ Rm−k is an open set.

Applying Lemma 2.4.4, we can change the order of ϕa’s arbitrarily in the definition of

Φ. Consequently, for 1 ≤ a ≤ k, we have

∂

∂ta
Φ(p) = Xa(p).

It follows

Φ∗|p
(
∂

∂t1
, · · · , ∂

∂tk
,

∂

∂xk+1
, · · · , ∂

∂xm

)
=

(
X1, · · · , Xk,

∂

∂xk+1
, · · · , ∂

∂xm

)
and Φ∗|p is non-degenerate.

Therefore, by the IFT, there is a small neighborhood V ⊂ U on which Φ is a diffeomor-

phism. Namely, (t1, · · · , tk, xk+1, · · · , xm) defines a local coordinate chart on V . Obviously,

the submanifold

Np = {q ∈ V |xα(q) = 0, k + 1 ≤ α ≤ m}

gives a local integral manifold of D. �

Remark 2.4.5 There is a dual version of Frobenius theorem, cf. Section 3.7 of [2] or

Theorem 3.2, page 198 of [4]. For a rank k distribution D, we can find l := m−k differential

local 1-forms ω1, · · · , ωl ∈ Γ(T ∗U) annihilating D, i.e.

X ∈ D ⇐⇒ ω1(X) = · · · = ωl(X) = 0.

Then the requirement of involutive distribution in the Frobenius theorem can be replaced by
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the following equivalent condition:

dωi ∧ ω1 ∧ ω2 ∧ · · · ∧ ωl = 0,∀1 ≤ i ≤ l.

2.4.3 Foliation

The above Frobenius theorem only gives local integral submanifold of an involutive

distribution. Next, we can extend the local submanifolds to maximal ones (or glue them

together), just like in the case of integral curves, which yields a global structure known as a

foliation.

Definition 2.4.6 A k-dimensional foliation F on an m-dimensional manifold M is a de-

composition of M into a union of disjoint connected submanifolds {Fα}α∈I , called the leaves

of the foliation, with the following property:

For every point in M , there is a local chart (U, φ;xi), such that for each leaf Fα,

the components of U ∩ Fα is given by

{q ∈ U ∩ Fα|xs(q) = cs is constant, k + 1 ≤ s ≤ m}.

As a standard model, imagine the decomposition of the Euclidean space Rm into the

cosets x + Rk of the standardly embedded subspace Rk. Another explicit example is the

foliation of a 2-torus by a family of cross circles. However, the decomposition of a sphere by

level sets of z-axis is not foliation because of the the singularities at the poles. In general,

the global structure of a foliation can be unexpectedly complicated.

Theorem 2.4.7 Suppose D is an involutive distribution of rank k on M , then the set of

maximal integral submanifolds of D gives a k-dimensional foliation of M .

Exercise 2.4.8 Suppose G is a Lie group, and H is a Lie subgroup. Show that G is foliated

by cosets of H.
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3.1 Tensor algebra

3.1.1 Multi-linear functions

Let V1, · · · , Vr be r vector spaces, a multi-linear function is a map Φ : V1×· · ·×Vr → R1

satisfying

Φ(v1, · · · , αvi + βv′i, · · · , vr) = αΦ(v1, · · · , vi, · · · , vr) + βΦ(v1, · · · , v′i, · · · , vr)

for all i = 1, 2, · · · , r, vi, v′i ∈ Vi and α, β ∈ R1. We denote the space of multi-linear functions

on V1 × · · · × Vr by L (V1, · · · , Vr;R1).

For example, a linear functions of V is just an element in the dual space V ∗. A bi-linear

function B ∈ L (V,W ;R1) is a linear map on V ×W which satisfies

B(αv1 + βv2, w) = αB(v1, w) + βB(v2, w),

B(v, αw1 + βw2) = αB(v, w1) + βB(v, w2).

3.1.2 Tensor product

Now we define an operation on multi-linear functions which acts like products. We

start with linear functions. Let ξ ∈ V ∗, η ∈ W ∗ be two linear functions, we define the tensor

product ξ ⊗ η to be a bi-linear function given by

ξ ⊗ η(v, w) = ξ(v)η(w), ∀v ∈ V,w ∈ W.

It is easy to verify that ξ ⊗ η ∈ L (V,W ;R1). Then we can go on to define multi-linear

functions by using tensor product on multiple linear functions. For example, for ξi ∈ V ∗i , i =

1, · · · , r, we have ξ1 ⊗ · · · ⊗ ξr ∈ L (V1, · · · , Vr;R1).

It is easy to see that the tensor product, as an operation, is bi-linear on its components

and is associative. However, the tensor product is not commutative.

Recall that for a finite dimensional vector space, we have V = (V ∗)∗, which means we

can regard V as the space of linear functions of V ∗. Thus the tensor product can be as well

defined for any vector space.
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3.1.3 Tensor spaces

All possible tensor products of elements in V ∗ and W ∗ naturally span a tensor product

space, denoted by

V ∗ ⊗W ∗ := span{ξ ⊗ η|ξ ∈ V ∗, η ∈ W ∗}.

If {ξi}mi=1 is a basis of V ∗ and {ηα}nα=1 is a basis of W ∗, then an induced basis of V ∗ ⊗W ∗

is {ξi ⊗ ηα}1≤i≤m,1≤α≤n. Hence the dimension of V ∗ ⊗ W ∗ is mn. Note that a typical

element in V ∗ ⊗W ∗ is not always decomposable, that is, it is not in a tensor product form

ξ ⊗ η. For example, for a two dimensional space V ∗ with basis ξ1, ξ2, the bi-linear function

B = ξ1 ⊗ ξ1 + ξ2 ⊗ ξ2 is not decomposable.

Now for a vector space V and non-negative integers r, s, we define the (s, r)-tensor space

of V to be

T rs V := V ⊗ · · · ⊗ V︸ ︷︷ ︸
s

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
r

.

If {ei}mi=1 is a basis of V and {e∗i }mi=1 is its dual basis of V ∗, then a basis of T rs V is given by

ei1 ⊗ · · · ⊗ eis ⊗ e∗j1 ⊗ · · · ⊗ e
∗
jr , 1 ≤ i1, · · · , is, j1, · · · , jr ≤ m.

Thus it is a linear space of dimension nr+s and an element L ∈ T rs V can be expressed by

L = ai1···isj1···jrei1 ⊗ · · · ⊗ eis ⊗ e
∗
j1
⊗ · · · ⊗ e∗jr .

By convention, we set T 0
0 V = R1. The total tensor space of V is

T V = ⊕∞r,s=0T
r
s V.

It is easy to see that the tensor product space V ∗⊗W ∗ is exactly the space of bi-linear

functions L (V,W ;R1). Similarly, using the tensor product, one can identify the space of

linear maps L(V ;W ) with the tensor space V ∗ ⊗W . Namely, if for a basis {ei}mi=1 ⊂ V and

{fα}nα=1 ⊂ W , a linear map L ∈ L(V ;W ) satisfies

L(ξi) = aαi fα, i = 1, · · · ,m,

then L can be identified with aαi e
∗
i ⊗ fα ∈ V ∗ ⊗W , where e∗i is the dual basis of ei.
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Example 3.1.1 For two manifolds M,N and a smooth map F : M → N , the tangent map

of F at x ∈M is a linear map

dF (x) = (F∗)|x : TxM → TF (x)N.

In local coordinates, since

(F∗)|x
(
∂

∂xi

)
=
∂Fα

∂xi
(x)

∂

∂yα
,

it can be written as

dF (x) =
∂Fα

∂xi
(x)dxi ⊗ ∂

∂yα
∈ T ∗xM ⊗ TF (x)N.

3.1.4 Tensor operations

A tensor Φ ∈ T rV := T r0V is called symmetric if ∀1 ≤ i, j ≤ r,

Φ(v1, · · · , vi, · · · , vj, · · · , vr) = Φ(v1, · · · , vj, · · · , vi, · · · , vr),

and is called anti-symmetric (or alternating) if for all i, j,

Φ(v1, · · · , vi, · · · , vj, · · · , vr) = −Φ(v1, · · · , vj, · · · , vi, · · · , vr).

We denote the space of symmetric and anti-symmetric multi-linear functions by Sr(V ) and

Ar(V ), respectively.

Let Pr be the space of permutations of r numbers. Recall that a permutation σ ∈ Pr is

a product of transpositions that only interchange two numbers. The sign of a permutation

sgnσ = (−1)k, where k is the number of transpositions, is well-defined. A permutation

σ ∈ Pr can act on Φ ∈ T rV by letting

(σΦ)(v1, · · · , vr) = Φ(vσ(1), · · · , vσ(r)).

The symmetrizing mapping is the projection S : T rV → Sr(V ) given by

S (Φ) =
1

r!

∑
σ∈Pr

σΦ.
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Similarly, the anti-symmetrizing mapping is a projection A : T rV → Ar(V ) given by

A (Φ) =
1

r!

∑
σ∈Pr

sgnσ · σΦ.

It is easy to see that both mappings are linear. Note that the constant is needed to ensure

that S and A are indeed projections, i.e. S 2 = S and A 2 = A .

There is another very useful operation for tensors, namely, the contraction mapping. It

is defined as a linear map Cqp : T rs V → T r−1
s−1 V for r, s ≥ 1 by letting

Cqp(a
i1···is
j1···jrei1 ⊗ · · · ⊗ eis ⊗ δ

j1 ⊗ · · · ⊗ δjr)

= (δjp , eiq)a
i1···is
j1···jrei1 ⊗ · · · ⊗ êiq ⊗ · · · ⊗ eis ⊗ δ

j1 ⊗ · · · ⊗ δ̂jp ⊗ · · · ⊗ δjr .

Example 3.1.2 A linear map from a vector space V to itself can be viewed as a tensor

Φ ∈ T 1
1 V . Fixing a basis {ei}ni=1 of V and its dual basis {δi}ni=1 of V ∗, we can write

Φ = aijei ⊗ δj ∈ T 1
1 V.

Or equivalently, we represent Φ ∈ L(V ;V ) by a matrix A := (aij). Then the symmetrizing

mapping takes A to S (A) = 1
2
(A + At), while the anti-symmetrizing mapping maps A to

A (A) = 1
2
(A−At). Note that A = S (A) + A (A). Moreover, the contraction map gives the

trace trA = C11(A) = aii.

3.1.5 Exterior product

The anti-symmetric multi-linear functions is particularly important in differential ge-

ometry. There is natural product operation in the category of anti-symmetric multi-linear

functions.

Suppose Φ ∈ Ar(V ) and Ψ ∈ As(V ), the exterior product or wedge product is a map

∧ : Ar(V )× As(V )→ Ar+s(V )

defined by

Φ ∧Ψ =
(r + s)!

r!s!
A (Φ⊗Ψ).
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The exterior product is obviously bi-linear on its components. It is also associative in view

of the following lemma. The constant in the definition of wedge product is chosen such that

the identity in the lemma is valid.

Lemma 3.1.3 For Φi ∈ Ari(V ), i = 1, · · · , p,

Φ1 ∧ · · · ∧ Φp =
(r1 + · · ·+ rp)!

r1! · · · rp!
A (Φ1 ⊗ · · · ⊗ Φp).

In particular, for ξi ∈ A1(V ) = V ∗, i = 1, · · · , p, we have

ξ1 ∧ · · · ∧ ξp = p!A (ξ1 ⊗ · · · ⊗ ξp).

The most useful property is that it is skew-symmetric in the following sense.

Lemma 3.1.4 Φ ∧Ψ = (−1)rsΨ ∧ Φ.

Proof. By linearity, it suffices to show the equality for Φ = ξi1 ∧ · · · ∧ ξir and Ψ =

ηj1 ∧ · · · ∧ ηjs . Using the fact that ξ ∧ η = −η ∧ ξ for ξ, η ∈ V ∗, we have

Φ ∧Ψ = ξi1 ∧ · · · ∧ ξir ∧ ηj1 ∧ · · · ∧ ηjs

= −ξi1 ∧ · · · ∧ ηj1 ∧ ξir ∧ · · · ∧ ηjs

= (−1)rηj1 ∧ ξi1 ∧ · · · ∧ ξir ∧ ηj2 ∧ · · · ∧ ηjs

= ((−1)r)sηj1 ∧ · · · ∧ ηjs ∧ ξi1 ∧ · · · ∧ ξir

= (−1)rsΨ ∧ Φ.

�

By a same process as in the definition of tensor product space, we define the exterior

product space

∧rV ∗ = V ∗ ∧ · · · ∧ V ∗︸ ︷︷ ︸
r

= span{ξ1 ∧ · · · ∧ ξr|ξi ∈ V ∗, 1 ≤ i ≤ r}.

It is easy to see that Ar(V ) = ∧rV ∗. Suppose {δi}ni=1 is a basis of V ∗, then one checks that

a basis of Ar(V ) is

δi1 ∧ · · · ∧ δir , 1 ≤ i1 < · · · < ir ≤ n.
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Hence the dimension of Ar(V ) is Cr
n. In particular, An(V ) has dimension 1 and is simply

the linear space generated by δ1 ∧ · · · ∧ δn.

Remark 3.1.5 Similarly, one can also define a product on symmetric multi-linear functions

· : Sr(V )× Ss(V )→ Sr+s(V ) by letting

Φ ·Ψ =
(r + s)!

r!s!
S (Φ⊗Ψ).

For example, given two vectors ω1, ω2 ∈ A1(V ) = V ∗, we have

ω1 ∧ ω2 = ω1 ⊗ ω2 − ω2 ⊗ ω1,

ω1 · ω2 = ω1 ⊗ ω2 + ω2 ⊗ ω1.

Here are more useful properties for exterior products.

Proposition 3.1.6 1) v1, · · · , vr ∈ V ∗ is linearly dependent if and only if

v1 ∧ · · · ∧ vr = 0

2) If A = (aji ) is a r × r matrix and wi = ajivj, 1 ≤ i ≤ r, then

w1 ∧ · · · ∧ wr = detA · v1 ∧ · · · ∧ vr.

3) Let F : V → W be a linear map, then for Φ ∈ Ar(V ) and Ψ ∈ As(V ),

F ∗(Φ ∧Ψ) = F ∗Φ ∧ F ∗Ψ.

Here the pull-back map F ∗ is defined by

F ∗Φ(v1, · · · , vr) := Φ(Fv1, · · · , Fvr), ∀v1, · · · , vr ∈ V.

Remark 3.1.7 Item 2 of the above proposition is related to the formula of change of vari-

ables in multi-integrals. That is, the determinant automatically appear in wedge products,

which is the key in defining integration on manifolds in a way that is independent on choice

of coordinates.
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3.1.6 Tensor fields and forms

For a manifold M , consider the tangent space TpM at a point p ∈M . Define the tensor

space

T (s,r)
p M := T rs (TpM) = TpM ⊗ · · · ⊗ TpM︸ ︷︷ ︸

s

⊗T ∗pM ⊗ · · ·T ∗pM︸ ︷︷ ︸
r

.

Then the (s, r)-tensor bundle is the total space

T (s,r)M := ∪p∈MT (s,r)
p M,

which is itself a manifold in a natural way. Indeed, it is a vector bundle of rank nr+s on M

and in local coordinates, has a natural basis

∂

∂xi1
⊗ · · · ⊗ ∂

∂xis
⊗ dxj1 ⊗ · · · ⊗ dxjr .

In particular, T (1,0)M is the tangent bundle and T (0,1)M is the cotangent bundle of M .

A section of T (s,r)M is called a (s, r)-type tensor field, or simply (s, r)-tensor, on M .

As usual, we always assume the section, hence the tensor field is smooth.

Exercise 3.1.8 Deduce the transformation formula of coefficients of a (r, s)-tensor under

the change of local coordinates.

In a similar manner, we consider the space of anti-symmetric multi-linear functions

Ar(TpM) and construct the r-th exterior bundle on M given by

∧rT ∗M = ∪p∈M ∧r T ∗pM = ∪p∈MAr(TpM).

A section of ∧rT ∗M is called a r-form, and the space of all r-forms is denoted by Λr(M). By

convention, 0-forms are just smooth functions Λ0(M) = C∞(M) and 1-forms are cotangent

vector fields Λ1(M) = Γ(T ∗M). The total space of all forms is denoted by

Λ(M) := ⊕mr=0Λr(M).

As the point in the underlying manifold varies, a (s, r)-tensor τ ∈ Γ(T (s,r)M) defines a
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linear map

τ : Λ1(M)× · · · × Λ1(M)︸ ︷︷ ︸
s

×X(M)× · · ·X(M)︸ ︷︷ ︸
r

→ C∞(M).

In fact, the map is C∞-linear, i.e. for ω1, · · · , ωs ∈ Λ1(M), X1, · · · , Xr ∈ X(M), and any

f ∈ C∞(M) and 1 ≤ i ≤ s, 1 ≤ j ≤ r, we have

τ(ω1, · · · , fωi, · · · , ωs, X1, · · · , Xr) = τ(ω1, · · · , ωs, X1, · · · , fXj, · · · , Xr)

= f · τ(ω1, · · · , ωs, X1, · · · , Xr).

Similarly, a r-form ω ∈ Λr(M) defines an anti-symmetric C∞-linear map

ω : X(M)× · · · × X(M)︸ ︷︷ ︸
r

→ C∞(M).

Exercise 3.1.9 Show that any C∞(M)-linear map

τ : Λ1(M)× · · · × Λ1(M)︸ ︷︷ ︸
s

×X(M)× · · ·X(M)︸ ︷︷ ︸
r

→ C∞(M)

can be identified with a (s, r)-tensor field.

Remark 3.1.10 More generally, we can define the tensor product bundle E ⊗ F on M of

two vector bundles E and F on M . If E and F has rank r, s with fiber space V and W

respectively, then E ⊗ F has rank rs with fiber space V ⊗W . More precisely, if {vi}ri=1 is

a local frame of E and {wα}sα=1 is a local frame of F , then {vi ⊗ wα} is a local frame of

E ⊗ F . For two overlapped open sets U, V ⊂ M , suppose the transition maps of E and F

are gE : U ∩ V → GL(r) and gF : U ∩ V → GL(s) respectively. Then the corresponding

transition map of E ⊗ F is simply

g̃ : U ∩ V → GL(r + s), g̃(x) = gE(x)⊗ gF (x).

such that

g̃(vi ⊗ wα) = gE(vi)⊗ gF (wα).

In particular, the tensor product and wedge product operation also applies to a vector bundle

E and its dual bundle E∗.

- 61 -



62 CHAPTER 3. INTEGRATION OF FORMS

3.2 Exterior derivative

3.2.1 Exterior derivatives

The exterior derivative extends the differential of a function to a globally defined oper-

ator on forms on manifolds.

First we define the exterior derivative locally. Suppose U ⊂ Rn is an open set with

coordinates xi, i = 1, · · · , n. Consider the space of p-forms Λp(U), which is spanned by the

basis

dxI := dxi1 ∧ · · · ∧ dxip , 1 ≤ i1 < · · · < ip ≤ n.

Then a local p-form on U has the form

ω = aIdx
I = ai1···ip(x)dxi1 ∧ · · · ∧ dxip .

Then the local exterior derivative on U is defined by

dU : Λp(U)→ Λp+1(U), dUω = daI ∧ dxI ,

where daI is the usual differential of function aI . In particular, for a smooth function

f ∈ C∞(U) = Λ0(U), dUf = df is the full differential of f .

Proposition 3.2.1 The local exterior derivative dU : Λ(U)→ Λ(U) satisfies

1) dU is linear

2) d2
U = dU ◦ dU = 0.

3) d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη if ω ∈ Λp(U).

Proof. The linearality is obvious. The second property follows from the fact that d2
Uf = 0

for any smooth function f on U . For the third property, it suffices to check for simples forms

where ω = fdxI and η = gdxJ . In this simple case, we have

d(ω ∧ η) = d(fgdxI ∧ dxJ) = d(fg) ∧ dxI ∧ dxJ

= df ∧ dxI ∧ gdxJ + (−1)pfdxI ∧ dg ∧ dxJ

= dω ∧ η + (−1)pω ∧ dη.
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�

Now for a differentiable manifold M , we have a local exterior derivative on every local

chart as above. If the definition agrees on overlapped areas of different charts, then we can

patch them together to give a globally defined operator, which is independent of the choice

of coordinates. Suppose the restriction of a p-form ω ∈ Λp(M) on two overlapped charts

(U ;x) and (V ; y) are given by

ω|U = aI(x)dxI , ω|V = bJ(y)dyJ .

By definition, we have

dUω|U = dxaI ∧ dxI , dV ω|V = dybJ ∧ dyJ .

We need to show that the above two forms coincide on the overlapped area U ∩ V .

To see this, consider y = y(x) and bJ(y) = bJ(y(x)) as functions of x on U ∩ V . Then

by Proposition 3.2.1, we have

dU(aIdx
I) = dU(bJdy

J)

= dxbJ ∧ dyJ + bJdU ◦ dUyJ

= dybJ ∧ dyJ = dV (bJdy
J).

Here the equality dxbJ = dybJ is due to the invariance of 1st-order differential of a function.

Therefore, we get a globally defined exterior derivative d : Λ(M) → Λ(M) on the

manifold M . Namely, for a p-form ω ∈ Λp(M), we require

(dω)|U = dUωU .

Alternatively, we can find a partition of unity {φk} subordinating to an atlas {Uk} and write

ω =
∑
φkω. Then d is given by

dω =
∑

dUk(φkω).

Obviously, the global operator d also satisfies Proposition 3.2.1. Moreover, for a smooth

function f ∈ Λ0(M), df ∈ Λ1(M) is exactly the tangent map of f . Namely, for any tangent
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vector field X ∈ X(M), we have

df(X) = X · f.

In fact, the above identity and those properties in Proposition 3.2.1 uniquely determines the

exterior derivative d on a given manifold (exercise).

Proposition 3.2.2 Suppose F : M → N is a smooth map and ω ∈ Λp(N), then

F ∗(dω) = d(F ∗ω).

Proof. We first show the proposition holds for smooth functions f ∈ Λ0(N), i.e.

F ∗(df) = d(F ∗f) = d(f ◦ F ).

This follows from the identity that for ∀X ∈ X(M),

(F ∗(df), X) = (df, F∗(X)) = F∗(X) · f = X · (f ◦ F ).

The general case follows by applying the above identity in local charts. Again note that

since F ∗ and d are both linear operators, it suffices to prove the proposition for simple forms.

The details are left to the readers. �

Example 3.2.3 The exterior operator d can be regarded as a generalization of differential

operators (grad, curl and div) in R3.

3.2.2 Invariant formula

Theorem 3.2.4 Suppose ω ∈ Λp(M) is a p-form and V1, · · · , Vp+1 ∈ X(M) are vector fields,

then

dω(V1, · · · , Vp+1) =

p+1∑
i=1

(−1)i−1Vi
(
ω(V1, · · · , V̂i, · · · , Vp+1)

)
+

∑
1≤i<j≤p+1

(−1)i+jω([Vi, Vj], V1, · · · , V̂i, · · · , V̂j, · · · , Vp+1).
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Proof. First note that the left hand side is C∞-linear (i.e. tensorial) on Vi. One can verify

that the right hand side is also C∞-linear on Vi. Thus we only need to prove the theorem

for a set of basis Vi = ∂ki , i = 1, · · · , p+ 1.

In a local chart, we assume ω = aIdx
I , then dω = daI ∧dxI . Then for Vi = ∂ki , we have

dω(V1, · · · , Vp+1) = daI ∧ dxI(∂k1 , · · · , ∂kp+1)

=

p+1∑
i=1

(−1)i−1∂kia
IdxI(∂k1 , · · · , ∂̂ki , · · · , ∂kp+1).

Since [∂i, ∂j] = 0, the theorem follows. �

In particular, for a 1-form ω ∈ Λ1(M), we have

dω(X, Y ) = X(ω(Y ))− Y (ω(X))− ω([X, Y ]).

3.2.3 Lie derivative of forms

First recall the definition of Lie derivative of vector fields. Suppose φt is the 1-parameter

group of diffeomorphisms generated by a vector field X ∈ X(M). By using the pull-back

φ∗t and the push-forward (φ−1)∗, the Lie derivative with regard to X can be defined on any

tensor field. In particular, we can define the Lie derivative of a p-form ω ∈ Λp(M) by

LXω :=
d

dt

∣∣∣
t=0
φ∗tω ∈ Λp(M).

From the property φ∗t (η ∧ ω) = (φ∗tη) ∧ (φ∗tω), we get

LX(η ∧ ω) = (LXη) ∧ ω + η ∧ (LXω).

Similarly, from φ∗t (dω) = d(φ∗tω), we have

LX(dω) = d(LXω).

There is an interior product opertator ι : X (M)× Λp(M)→ Λp−1(M) defined by

ιXω(X1, · · · , Xp−1) = ω(X,X1, · · · , Xp−1).
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Obviously, ι is C∞-linear both in X and ω. In particular, if ω ∈ Λ1(W ) is a 1-form ,then

ιXω = ω(X). Moreover, for ω ∈ Λp(M), we have

ιX(ω ∧ η) = (ιXω) ∧ η + (−1)pω ∧ (ιXη).

Theorem 3.2.5 (Cartan’s identity) The Lie derivative of a p-form satisfies

LXω = d(ιXω) + ιX(dω).

Proof. We first demonstrate an easy prove for 1-forms. Suppose ω is a 1-form, then for

X, Y ∈X (M), we have the Leibnitz rule

(LXω)(Y ) = LX(ω(Y ))− ω(LXY ).

By Theorem 3.2.4, we have

dω(X, Y ) = X(ω(Y ))− Y (ω(X))− ω([X, Y ]).

Therefore,

(LXω)(Y ) = Y (ω(X)) + dω(X, Y ).

For the general case, define

T (X,ω) = LXω − d(ιXω)− ιX(dω).

We will show T (X,ω) ≡ 0 for all X and ω. First note that T is tensorial in ω (actually it is

tensorial on both arguments). Indeed, for any f ∈ C∞(M), we compute

LX(fω) = fLXω + LXf · ω,

d(ιX(fω)) = d(fιXω) = df ∧ ιXω + fd(ιXω),

ιXd(fω) = ιX(df ∧ ω + fdω) = df(X) · ω − df ∧ ιXω + fιX(dω).

Since LXf = df(X), it follows T (X, fω) = fT (x, ω). Thus we only need to prove T (X,ω) =
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0 for a basis ω = dx1 ∧ · · · ∧ dxp. Suppose X = X i∂i, then we have dω = 0 and

T (X,ω) = LX(dx1 ∧ · · · ∧ dxp)− d(ιX(dx1 ∧ · · · ∧ dxp))

=

p∑
i=1

dx1 ∧ · · · ∧ LXdxi ∧ · · · ∧ dxp −
p∑
i=1

d((−1)i−1dx1 ∧ · · · ιXdxi · · · ∧ dxp)

= (−1)i−1(LXdxi − d(ιXdx
i)) ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxp.

Finally, note that LXdxi = d(LXxi) = d(X(xi)) = dX i and ιXdx
i = dxi(X) = X i and the

proof is finished. �

3.2.4 de Rham cohomology

The property d2 = 0 induces a natural cohomology on a differentiable manifold, which

is called the de Rham cohomology.

Write the exterior derivative on ΛpM as dp : ΛpM → Λp+1M , then dp ◦ dp−1 = 0 implies

Imdp−1 ⊂ Ker dp. Therefore we can defined the p-th de Rham cohomology group as the

quotient space

Hp
d(M) = Ker dp/Imdp−1.

We call elements in Ker d closed forms and those in Imd exact forms. Thus an equivalent

class [ω] ∈ Hp
d(M) of a closed form ω ∈ Ker dp is given by

[ω] = {ω + dη|η ∈ Λp−1(M)}.

By convention, we define H0
d(M) = Ker d0 to be the space of constant functions, which is

just R1 for connected manifolds.

Example 3.2.6 The de Rham cohomology of the sphere Sn.
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3.3 Integration of forms

3.3.1 Orientation

First let’s recall the definition of orientation in basic analysis, which is defined extrin-

sically. For any point in a embedded surface Σ in the Euclidean space R3, there are two

opposite choices of unit normal vectors. An orientation then is a continuous way of assigning

a normal vector at each point ~n : Σ→ R3. A surface which supports such a map ~n is called

orientable and has two opposite orientations ±~n.

On the other hand, assigning an normal vector ~n at a point is equivalent to assigning

an ordered basis {~e1, ~e2} of the tangent space, such that {~e1, ~e2, ~n} forms an oriented basis

of R3. For example, if the tangent plane is the x− y plane, then choosing ∂z as the normal

direction is equivalent, by the right hand principle, to choosing {∂x, ∂y} as the ordered basis.

Then (locally) an orientation is just a continuous choice of the ordered basis.

This motivates an intrinsic method of defining an orientation on a n-dimensional man-

ifold M . The ordered basis {e1, · · · , en} ⊂ TpM at a point p ∈ M is represented by the

wedge product

e1 ∧ · · · ∧ en ∈ ∧n(TpM)\{0}

Recall that the top exterior space ∧n(TpM) has dimension one. Thus if we regard different

sets of ordered basis, i.e. different elements in ∧n(TpM)\{0} as the same when they differ

by a positive number, then we get exactly two different choices. Thus an orientation of the

manifold is (the equivalent class of) a continuous section ω : M → Λn(M), which dose not

vanish anywhere.

Definition 3.3.1 • A smooth manifold is called orientable if there exists a non-vanishing

n-form ω ∈ Λn(M).

• An orientation of M is a the equivalent class of non-vanishing n-forms, where ω ∼ ω′

if ω = fω′ for a positive function f > 0.

Obviously, there are two orientations for every connected orientable manifold, and a

manifold is orientable if and only if ∧n(TM) is a trivial bundle.

There is an equivalent definition by using local charts. Suppose we have an orientation

represented by a non-vanishing ω ∈ Λn(M), then in each local chart (U, x), we may arrange

- 68 -



3.3. INTEGRATION OF FORMS 69

the indices of coordinates, such that

ω|U = fdx1 ∧ · · · ∧ dxn,

where f is a positive smooth function on U . We call such a chart compatible with the

orientation ω. Then if two compatible charts overlap, we have

ω|U∩V = fdx1 ∧ · · · ∧ dxn = gdy1 ∧ · · · ∧ dyn,

where f, g are both positive. Recall that under the change of coordinates, if we denote the

Jacobi matrix A = (∂xi/∂yj),

dx1 ∧ · · · ∧ dxn = detAdy1 ∧ · · · ∧ dyn.

Therefore, detA = g/f is positive. Conversely, if we have an atlas where all the Jacobian

matrices of transformation maps have positive determinant, then we can easily construct a

non-vanishing n-form by partition of unity, which gives a compatible orientation. We will

call such an atlas an oriented atlas and the corresponding n-form the induced orientation.

This leads to the following.

Definition 3.3.2 An orientation is a choice of oriented atlas such that the Jacobian deter-

minant of all transition maps are positive.

Example 3.3.3 Orientable manifolds:

1) The orientation of the Euclidean space Rn is given by the standard form

Ωn = dx1 ∧ · · · ∧ dxn.

2) (Hyper-surfaces as level sets) Suppose f is a smooth function on Rn+1 and c ∈ R1 is

a regular value of f . Then the level set M := {x ∈ Rn+1|f(x) = c} is an orientable

manifold. Typical examples are the n-sphere Sn.

Since c is a regular value, N = ∇f gives a non-vanishing normal vector field on M .

Thus we can construct a non-vanishing n-form ω = ιNΩn+1 on M , where Ωn+1 is the
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standard form on Rn+1. More explicitly, we have ∇f = ∂if∂i, thus

ιNΩ = (−1)i−1∂ifdx
1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn+1.

Note that the n-form is originally defined in Rn+1, but can be pulled-back/restricted to

M via the embedding M ↪→ Rn+1, which is still non-vanishing.

Alternatively, we can chose a n-form ω′ by requiring

df ∧ ω′ = Ω.

More precisely, if in a neighborhood U ⊂M , ∂jf 6= 0 for some j, then

(x1, · · · , xj−1, xj+1, · · · , xn+1)

forms a local coordinate system on U . Then we define ω′ on U by

ω′ = (−1)j−1 1

∂jf
dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn+1.

Then one checks that ω′ coincides on different coordinate charts and gives a globally

defined non-vanishing n-form. Actually, ω = |∇f |2ω′.

Exercise 3.3.4 By generalizing the above construction, show that a higher co-dimensional

submanifold given by the level set of a rank k vector-valued function F : Rn+k → Rk is

orientable.

Example 3.3.5 Non-orientable manifolds:

1) (Möbius band) Recall that the Möbius band is constructed from the 2 dimensional strip

S = {(x, y) ∈ R2| − 1 < x < 1,−1 < y < 1} by identifying the points (x, y) and

(x− 1,−y) for all 0 < x < 1,−1 < y < 1.

There is a projection π : S → M where M is the Möbius band. Assume that M is

orientable and supports a non-vanishing two-form ω, then π∗ω gives a non-vanishing

two form on S. Since there is a canonical two-form w0 = dx ∧ dy on S, there exists

a non-zero smooth function f such that π∗ω = fω0. However, this is impossible since

we must have f(x, y) = −f(x− 1,−y).
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2) (The real projective space RP n) Let σ : Rn+1 → Rn+1 be the reflection σ(x) = −x,

then the restriction of σ on Sn gives the antipodal map. There is a natural projection

π : Sn → RP n defined by π(x) = [x] where [x] is the line through x. Obviously,

π ◦ σ = π and σ2 = id. Actually, Sn is a double cover of RP n.

The standard orientation of Sn is given by ω = ιNΩn+1, where N is the outer unit

normal of the sphere Sn. Under the antipodal map σ, we have for any x ∈ Sn,

σ∗ω(x) = ισ∗(N(−x))σ
∗(Ωn+1(−x)) = ιN(x)(−1)n+1Ωn+1(x) = (−1)n+1ω(x).

Now if n is even, assume there is a non-vanishing n-form η on RP n. Since π is a local

diffeomorphism, the pull-back π∗η gives a non-vanishing n-form on Sn. Thus π∗η = fω

for some non-zero function f on Sn. But

fω = π∗η = (π ◦ σ)∗η = σ∗ ◦ π∗η = σ∗(fω) = σ∗f · σ∗ω = f ◦ σ · (−1)n+1ω.

It follows f = (−1)n+1f ◦σ, thus f must change sign when n is even, which contradicts

to the fact that f is positive.

On the other hand, if n is odd, then σ∗ω = ω. Hence by projecting the standard n-

form on Sn, the local diffeomorphism π induces a well-defined non-vanishing n-form

on RP n. More precisely, for any [x] ∈ RP n, let π1 and π2 be the two diffeomorphisms

defined by restricting π on a neighborhood of x and −x, respectively. Then we need to

check (π−1
1 )∗ω(x) and (π−1

2 )∗ω(−x) coincide. But

(π−1
2 )∗ω ◦ σ(x) = (π−1

2 )∗ ◦ σ∗ω(x) = (σ ◦ π−1
2 )∗ω(x) = (π−1

1 )∗ω(x).

The last equality holds since π1 = π2 ◦ σ and σ ◦ π−1
2 = π−1

1 .

Therefore RP n is orientable iff n is odd.

Exercise 3.3.6 Show that the Klein bottle is non-orientable.
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3.3.2 Integration

Now we can define the integration of n-forms on an orientable manifold. The idea

originates from the classical change of variables formula of integrations. Namely, under a

change of variables x→ y in an open set U ∈ Rn, we have∫
φ(U)

f(y)dy1 · · · dyn =

∫
U

f(y(x))
∣∣∣∂(y1, · · · , yn)

∂(x1, · · · , xn)

∣∣∣dx1 · · · dxn.

Notice that we take the absolute value of the Jacobi determinant.

We first define the integration of a local n-form on a local chart (U, φ;x). Suppose ω is

a locally supported n-form in U given by

ω = fdx1 ∧ · · · ∧ dxn,

where suppf ⊂⊂ U . Then we define the integral of ω by∫
U

ω =

∫
φ(U)

fdx1 · · · dxn.

Next on the orientable manifold M with an oriented atlas A . Given a globally defined

n-form ω ∈ Λn(M), we first decompose it into local ones by a partition of unity {ψk}
subordinating to the oriented atlas A = {(Uk, φk)}, such that

ω =
∑
k

ψkω =
∑
k

fkdx
1
k ∧ · · · ∧ dxnk ,

and suppfk ⊂⊂ Uk. Then the integral of ω on M is given by∫
M

ω =
∑
k

∫
Uk

ψkω =
∑
k

∫
φk(Uk)

fkdx
1
k · · · dxnk .

This integration is well-defined since the Jacobian determinants of compatible charts are

positive and consistent to the change of variable formula. Note that the integral differs by a

sign if we choose the opposite orientation.

More globally, if we fix a non-vanishing n-form Ω on an oriented manifold M as a

background (volume) form. Then any n-form ω ∈ Λn(M) can be represented by ω = fΩ for
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some f ∈ C∞(M), and the integral of ω is∫
M

ω =

∫
M

fΩ.
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3.4 Stokes’ theorem

3.4.1 Manifold with boundary

Let Hn := {x ∈ Rn|xn ≥ 0} ⊂ Rn be the n-dimensional upper half-plane, which is

equipped with the subset topology induced from Rn. The boundary of Hn is the (n − 1)-

dimensional plane

∂Hn = {x ∈ Rn|xn = 0}.

For open sets U, V ⊂ Hn, we say a map f : U → V is smooth if it is the restriction of

a smooth map from an open set in Rn to Rn. Similarly, f is a diffeomorphism if it is the

restriction of a diffeomorphism between two open sets in Rn.

Definition 3.4.1 A manifold with boundary is a manifold where each local chart is home-

omorphic to an open set in the half space Hn. A point p ∈ M is called an interior point if

there is a local chart such that φ(p) /∈ ∂Hn. Otherwise, we call it a boundary point. The

boundary of M is the set of all boundary points and denoted by ∂M .

It is easy to see that the definition of boundary points is independent of choice of local

charts. A point p ∈M is a boundary point iff in any local chart it corresponds to a boundary

point of the upper half-plane φ(p) ∈ ∂Hn. So locally, the boundary points are exactly the

set φ−1(U ∩ ∂Hn).

The restriction of an atlas of M gives an atlas on ∂M . Thus ∂M is a (n − 1) dimen-

sional embedded manifold of M . Note that a manifold could have (even infinitely) many

disconnected boundary components.

Typical examples include the half-plane, unit ball, semi-sphere and cylinders. In par-

ticular, a manifold with an open set removed yields a manifold with boundary.

3.4.2 Induced orientation on boundary manifold

Theorem 3.4.2 If M is an orientable manifold with boundary, then its boundary ∂M is

orientable. In particular, the restriction of an oriented atlas on M gives an oriented atlas

on ∂M .

Proof. Suppose (U, x), (V, y) are two charts near boundary on M such that the Jacobian

matrix ∂y/∂x has positive determinant. By definition, for any boundary point p ∈ U ∩ V ,
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we have xn(p) = yn(p) = 0 and in the interior (U ∩ V ) \ ∂M , we have xn > 0, yn > 0. So

the transition map y = y(x) has the property that yn(x1, · · · , xn−1, 0) = 0 and yn(x) > 0 if

xn > 0. Therefore
∂yn

∂x1

∣∣∣
p

= · · · = ∂yn

∂xn−1

∣∣∣
p

= 0,
∂yn

∂xn

∣∣∣
p
> 0.

Let U ′ = U ∩ ∂M, V ′ = V ∩ ∂M and x′ = (x1, · · · , xn−1), y′ = (y1, · · · , yn−1) be the

restriction of (U, x), (V, y) on ∂M . Then we have

det
∂y

∂x
= det

∂y′

∂x′
· det

∂yn

∂xn
> 0.

It follows that det ∂y′

∂x′
> 0 and (U ′, x′), (V ′, y′) are compatible charts on ∂M .

Therefore, if there is an oriented atlas on M , then its restriction gives an oriented atlas

on ∂M . This finishes the proof. �

Next, we specify the induced orientation on the boundary manifold, which is the “outer

normal” orientation defined as follows.

First observe that there exist a non-vanishing outer normal vector field N on ∂M . In

each local chart (U, x) at the boundary, a local outer normal vector field is given by − ∂
∂xn

.

Then N is constructed by gluing them together via partition of unity. One verifies that N

is indeed non-vanishing on ∂M .

Now for an orientation on M represented by a non-vanishing n-form Ω ∈ Λn(M), the

induced orientation Ω′ of ∂M is defined by

Ω′ =
(
ιNΩ

)
|∂M .

Note that in a local chart (U, x) which is compatible with Ω, the induced orientation Ω′ is

ι− ∂
∂xn

(
dx1 ∧ · · · ∧ dxn

)
= (−1)ndx1 ∧ · · · ∧ dxn−1.

That is, the restricted chart (∂U, (x1, · · · , xn−1)) on ∂M differs from the induced orientation

Ω′ by (−1)n.

Remark 3.4.3 Obviously there is an (opposite) induced orientation on the boundary, which

corresponds to the inner normal vector field. We choose the outer normal orientation to

make the following Stokes’ theorem more elegant.
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Remark 3.4.4 We are not saying that the boundary of a non-orientable manifold is not

orientable. For example, the boundary of a Möbius band is S1, which is of course orientable.

3.4.3 Stokes’ formula

Since ι : ∂M → M is a submanifold, if ω ∈ Λp(M) is a form on M , its restriction

ω|∂M := ι∗ω gives a form on ∂M .

Theorem 3.4.5 Suppose M is an n-dimensional oriented manifold with boundary ∂M ,

which is endowed with the induced orientation. Then for any (n− 1)-form ω ∈ Λn−1(M),∫
M

dω =

∫
∂M

ω|∂M .

Proof. Choose a partition of unity subordinating to an oriented atlas on M . By definition∫
M

dω =
∑∫

U

ψdω =

∫
M

d
(∑

ψω
)

=
∑∫

U

d(ψω).

Locally on each chart (U, φ), we have

ψω =
n∑
i=1

fidx
1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn,

and

d(ψω) =
n∑
i=1

(−1)i−1∂ifidx
1 ∧ · · · ∧ dxn.

Since fi has compact support on U , if U does not intersect with the boundary, we have∫
U

d(ψω) =
n∑
i=1

∫
Rn

(−1)i−1∂ifidx
1 · · · dxn = 0.

Otherwise, ∫
U

d(ψω) = (−1)n−1

∫
Rn−1

dx1 · · · dxn−1

∫ +∞

0

∂nfndx
n

= (−1)n
∫
Rn−1

fn(x1, · · · , xn−1, 0)dx1 · · · dxn−1.
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On the other hand, at the boundary of U , we have

(ψω)|∂U = ψ′ω|∂M = fn|xn=0dx
1 ∧ · · · ∧ dxn−1

= (−1)nfn(x1, · · · , xn−1, 0) · (−1)ndx1 ∧ · · · ∧ dxn−1.

Since the induced orientation on ∂M is (−1)ndx1 ∧ · · · ∧ dxn−1, we get∫
∂M

ω|∂M =
∑∫

U ′
ψ′ω|∂M =

∑∫
Rn−1

(−1)nfn(x1, · · · , xn−1, 0)dx1 · · · dxn−1.

This completes the proof. �

As an easy corollary, if the manifold M is closed, i.e. ∂M = ∅, then
∫
M
dω = 0.

Exercise 3.4.6 Show that the above Stokes’ theorem is a generalization of the classical Green

formula, Gauss formula and Stokes formula in multi-variable calculus.
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3.5 de Rham cohomology

3.5.1 Definition

The property d2 = 0 induces a natural cohomology on a differentiable manifold, which

is called the de Rham cohomology.

Write the restriction of the exterior derivative on Λp(M) as dp : Λp(M) → Λp+1(M),

then dp ◦ dp−1 = 0 implies Imdp−1 ⊂ Ker dp. Therefore we can defined the p-th de Rham

cohomology group as the quotient space

Hp
d(M) = Ker dp/Imdp−1.

We call elements in Ker d closed forms and those in Imd exact forms. Thus an equivalent

class [ω] ∈ Hp
d(M) of a closed form ω ∈ Ker dp is given by

[ω] = {ω + dη|η ∈ Λp−1(M)}.

By convention, we define H0
d(M) = Ker d0 to be the space of constant functions, which is

just R1 for connected manifolds.

Remark 3.5.1 Although we can it the cohomology group, it is simply a real vector space.

It is straight forward to check that the de Rham cohomology groups of a manifold M

of dimension n satisfies the following properties:

• Hp(M) = 0 if p > n.

• for a ∈ Hp(M) and b ∈ Hq(M), there is a bilinear product a ∧ b ∈ Hp+q(M) which

satisfies

a ∧ b = (−1)pqb ∧ a.

• if F : M → N is a smooth map, then it defines a natural linear map

F ∗ : Hp(N)→ Hp(M)

where commutes with the wedge product.
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Theorem 3.5.2 Let F : M× [0, 1]→ N be a smooth map. Set Ft(x) = F (x, t) and consider

the induced map F ∗t : Hp(N)→ Hp(M). Then

F ∗1 = F ∗0 .

Proof. Represent a ∈ Hp(N) by a closed p-form α ∈ Λp(N) and consider the pull-back

form F ∗α on M × [0, 1]. We can decompose it uniquely in the form

F ∗α = β + dt ∧ γ

where β(t) ∈ Λp(M) and γ(t) ∈ Λp−1(M) for all t ∈ [0, 1]. More explicitly,

β = F ∗t α, γ = ι ∂
∂t
F ∗α.

Since α is closed, we have

0 = dα = dMβ + dt ∧ ∂tβ − dt ∧ dMγ,

where dM is the exterior derivative of M . It follows that ∂tβ = dMγ.

Now integrating with respect to t, we obtain

F ∗1α− F ∗0α =

∫ 1

0

∂tβdt =

∫ 1

0

dMγdt = dM

∫ 1

0

γdt.

So the closed forms F ∗1α and F ∗0α differ by an exact form and

F ∗1 a = F ∗0 a.

�

Example 3.5.3 Hp(Rn) = 0 for p > 0.

Proof. Consider the family of maps

F : Rn × [0, 1]→ Rn, (x, t) 7→ tx.
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Then F1(x) = x is identity and F0(x) = 0. It follows that F ∗1 : Hp(Rn)→ Hp(Rn) is identity

while F ∗0 : Hp(Rn)→ Hp(Rn) vanishes. Then if follows from Theorem 3.5.2 that

Hp(Rn) = F ∗1 (Hp(Rn)) = F ∗0 (Hp(Rn)) = 0.

�

Similar arguments show that the Hp(U) = 0 for a star-shaped set U ⊂ Rn and p > 0.

This is usually called the Poincaré Lemma.

Theorem 3.5.4 (Poincaré Lemma) Any closed form on a star-shaped set U ⊂ Rn is

exact.

Example 3.5.5 Hp(Sn) = R1 if p = 0 or p = n, and vanishes otherwise.

Refer to Hitchin [1] for more details and applications.

3.5.2 de Rham theorem

The differentiable singular homology is constructed by requiring the continuous map

in the definition of singular simplices to be differentiable. Namely, a differentiable singular

p-simplex in M is a smooth map σ from the standard p-simplex ∆p ⊂ Rp to M , where

∆p := {x ∈ Rp|
p∑
i=1

xi = 1 and xi ≥ 0}.

Then the integration of a p-form ω ∈ ΛpM on the simplex σ is defined as∫
σ

ω :=

∫
σ(∆p)

ω =

∫
∆p

σ∗ω.

This integration can be naturally generalized to p-chains and p-cycles.

Theorem 3.5.6 (de Rham theorem) Suppose M is an n-dimensional differentiable man-

ifold, then for each p = 0, 1, · · · , n, there exists an isomorphism between the p-th de Rham

cohomology Hp
d(M) and the p-th (differentiable) singular cohomology H∗p (M ;R1), which is

given by

[ω] · [c] =

∫
c

ω.
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Here ω is a closed p-form and c is a (differentiable) p-cycle.

The above action is well-defined since for any representative ω′ = ω + dη ∈ [ω] and

c′ = c+ ∂b ∈ [c], we have∫
c′
ω′ =

∫
c+∂b

(ω + dη) =

∫
c

ω +

∫
c

dη +

∫
∂b

ω′.

Recall that by definition ∂c = 0 and dω′ = 0. It follows from Stoke’s theorem that∫
c

dη =

∫
∂c

η = 0

and ∫
∂b

ω′ =

∫
b

dω′ = 0.

In fact, one can prove the differential singular homology is the same as the (continuous)

singular homology. Thus the de Rham cohomology is a topological invariant. Moreover, the

exterior product induces an ring structure on the de Rham cohomology, and there is a ring

structure on the singular cohomology given by the cup product. The map constructed in the

de Rham theorem is actually an algebra isomorphism, i.e. it preserves the ring structure.
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4.1 Riemannian metrics

We have now seen that with the differential structure on a differentiable manifold, we

can perform both differentiation and integration on the manifold. The basic idea is to

mimic locally what we do on Euclidean space, and then patch everything together in a

well-defined global way. There is another important structure other than the differential

structure, namely, the inner produce structure, that can be also generated to differentiable

manifolds in a similar way. In this section, we will see that for any differentiable manifold M ,

we can equip a metric on M , which is represented by a (0, 2)-tensor. With this Riemannian

metric, we can finally discuss the geometry of a differentiable manifold.

4.1.1 Inner product on a vector space

Let’s first investigate the notion of a metric on a (finitely dimensional) linear space,

i.e. the Euclidean space. A metric space is given by a distance function which satisfies the

triangle inequality. For a linear space V , a norm gives a distance function by letting

d(v, w) = |v − w|, ∀x, y ∈ V.

In particular, an inner product on V will provide us both a norm |v| = 〈v, v〉 12 and the notion

of an angle, by

〈v, w〉 = |v| · |w| · cos∠(v, w).

For a finitely dimensional space, to define an inner product is equivalent to specify a

set of orthonormal basis, which is in turn equivalently defined by a positive definite matrix

under a choice of basis. For us, however, the most convenient way is to view an inner product

as a (0, 2)-tensor g ∈ T (0,2)V such that

g(v, w) = 〈v, w〉, ∀x, y ∈ V.

where g is symmetric and positive definite.
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4.1.2 Riemannian metric

Now for a differentiable manifold M , at each point p ∈M the infinitesimal local struc-

ture is given by the tangent space TpM , which is indeed a linear space. Thus we first define

an inner product on TpM at each point p ∈M , then we require it varies smoothly on M .

Definition 4.1.1 A Riemannian metric on a manifold M is a symmetric positive definite

(0, 2)-tensor g ∈ Γ(T (0,2)M). A manifold endowed with a Riemannian metric is called a

Riemannian manifold

In local coordinates, we can write

g|U(x) = gij(x)dxi ⊗ dxj =: gij(x)dxidxj,

where dxidxj = S (dxi ⊗ dxj) is the symmetric tensor product. Again the matrix (gij) is

symmetric and positive definite.

The existence of a Riemannian metric dose not impose any restrictions on the manifold.

Indeed, for any manifold, one can construct a Riemannian metric by patching local Euclidean

metrics together by a partition of unity.

Example 4.1.2 The Euclidean metric on a Euclidean space can be written as

gRn = δijdx
idxj =

∑
i

(dxi)2

in Cartesian coordinates. In particular, in the polar coordinates on R2, the standard metric

is

gR2 = dr2 + r2dθ2.

An immersed submanifold of a Riemannian manifold is again a Riemannian manifold.

More precisely, if (M, g) is a Riemannian manifold and ι : N ↪→M is an immersion, then N

is a Riemannian manifold with the pull-back metric ι∗g.

Example 4.1.3 The two sphere S2 is naturally embedded in the Euclidean space R3. Denote

the north and south pole of S2 by N and S respectively. Recall that the spherical coordinates
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(r, θ) ∈ (0, π)× [0, 2π) is well-defined on S2 \{N,S}. The embedding is given by ι : S2 → R3

where

(x1, x2, x3) = ι(r, θ) = (sin r cos θ, sin r sin θ, cos r).

The standard metric of S2 is the pull-back metric g = ι∗g0 = dr2 + sin2 rdθ2.

Using the stereographic projection at S, we can write the metric in another coordinate.

Recall the stereographic projection PS : S2 \ {S} → R2 is a bijection given by

(ξ1, ξ2) = PS(x1, x2, x3) =

(
x1

1 + x3
,

x2

1 + x3

)
.

Then one verifies that the metric has the form

g = P∗Sg0 =
4

(1 +
∑

i(ξ
i)2)2

δijdξ
idξj.

Example 4.1.4 (The two dimensional hyperbolic space)

• The half-plane model

H2 = {(x, y) ∈ R2|y > 0}

with

g1 =
1

y2
(dx2 + dy2).

• The Poincaré disk model

D2 = {(ξ1, ξ2) ∈ R2|ξ2 + η2 < 1}

with

g2 =
4

1−
∑

i(ξ
i)2
δijdξ

idξj.

• The hyperboloid model

H2 = {(x1, x2, x3) ∈ R2+1|(x1)2 + (x2)2 − (x3) = −1, x3 > 0}

with

g3 = dr2 + sinh2 rdθ2,
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where we use the hyperbolic coordinates

(r, θ)→ (x1, x2, x3) = (sinh r cos θ, sinh r sin θ, cosh r).

Definition 4.1.5 Let (M, g) and (N, h) be two Riemannian manifolds and F : M → N be a

diffeomorphism. The map F is called an isometry if the pull-back metric satisfies F ∗h = g.

If such an isometry exists, we also say (M, g) and (N, h) is isometric.

We may view the half-plane H2 and the poincaré disk D2 as subsets in the complex

plane C1. Then the isometry of H2 and D2 is given by the Mobius tranformation

H2 → D2, z → i
z − i
z + 1

.

The isometry between the Poincaré disk D2 and the hyperboloid H2 is given by the stereo-

graphic projection.

Exercise 4.1.6 For an open neighborhood U ⊂M , show that there exists a local orthonormal

basis {ωi} ⊂ Γ(T ∗U) such that g|U =
∑

(ωi)2.

4.1.3 Manipulating indices of tensors

At each point p ∈ M , the Riemannian metric g induces an isomorphism Φg : TpM →
T ∗pM as follows. For each v ∈ TpM , we can find a unique dual v∗ ∈ T ∗pM by letting

v∗(w) = g(v, w),∀w ∈ TpM.

Similarly, for each ω ∈ T ∗pM , we have a dual w∗ ∈ TpM such that

ω(w) = g(ω∗, w),∀w ∈ TpM.

Locally, suppose {ei} is a basis of TpM and {δi} ⊂ T ∗pM is its dual. If v = viei, then we

have v∗ = viδ
i, where vi = gijv

j. Similarly, for ω = aiδ
i and ω∗ = aiei, we have ai = gijai

where (gij) is the inverse of (gij). We call this process lowering the index of v and raising

the index of ω, respectively.
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By varying the point, the above process can be easily defined on a vector field or an

1-form. For example, a vector field V = vi ∂
∂xi

can be identified with a 1-form ω = gijv
jdxi.

In fact, we may extend the isomorphism Φg to any tensor space, and identify a (r, s)-tensor

T with a (r+ 1, s− 1)-tensor T̄ or a (r− 1, s+ 1)-tensor T̃ by raising or lowering the index,

respectively. In local coordinates, this means

T̄ i1···irkj1···js−1
= glkT i1···irj1···js−1l

, T̃
i1···ir−1

j1···jsk = glkT
i1···ir−1l
j1···js .

Exercise 4.1.7 For a (0, 2)-tensor h ∈ Γ(T (0,2)M), identify it with a (1, 1)-tensor and a

(2, 0)-tensor by raising the indices. In particular, what are the corresponding tensors for the

Riemannian metric g?

4.1.4 Induced metric on tensors

The Riemannian metric g naturally induces a metric g∗ on 1-forms by

g∗(ω, η) = g(ω∗, η∗), ∀ω, η ∈ Λ1(M).

Then the isomorphism Φg defined above becomes an isometry.

Next we can extend g to any tensor space on M by induction as follows. Suppose

α1, α2 ∈ T (r,s)M,β1, β2 ∈ T (k,l)M , then we define

g(α1 ⊗ β1, α2 ⊗ β2) = g(α1, α2) · g(α2, β2).

For example, for the (0, 2)-tensor g itself, we can compute

〈g, g〉 = 〈gijdxi ⊗ dxj, gkldxk ⊗ dxl〉 = gijgklg
ikgjl = δki δ

l
k = n.

Since any p-form is just an anti-symmetric tensor, we also obtain an inner produce for

p-forms. Indeed, for αi, βj ∈ Λ1(M), 1 ≤ i, j ≤ p, we have

g(α1 ∧ · · · ∧ αp, β1 ∧ · · · ∧ βp) = det
(
g(αi, βj)

)
.

Exercise 4.1.8 Prove the above identity.
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4.1.5 Volume form

Suppose (M, g) is an oriented Riemannian manifold. Since the space Λn(M) of n-forms

is of one dimensional, there exists a unique n-form dv of unit length, which represents the

orientation. We call dv the volume form of (M, g).

Locally in a compatible chart, if dv = a(x)dx1 ∧ · · · dxn, then

〈dv, dv〉 = a2 det(gij) = 1.

Thus dv =
√

detGdx1 ∧ · · · dxn where G = det(gij).

With the volume form, we can define the integration of any smooth function f ∈ C∞(M)

by ∫
M

fdv =

∫
M

f(x)
√

detGdx1 ∧ · · · dxn.

4.1.6 Distance function on a Riemannian manifold

Using the Riemannian metric, we can define the length of any tangent vector. Namely,

we define the norm

|v| = 〈v, v〉
1
2 = g(v, v)

1
2 ,∀v ∈ TpM.

Since a smooth curve can be approximated by a piecewise linear curve, we then can define

the length of the curve by taking a limit. More precisely, suppose γ : [a, b]→M is a smooth

curve, then we define the length of γ by

L(γ) :=

∫ b

a

∣∣∣∣dγdt
∣∣∣∣ dt.

Finally, for any p, q ∈ M , we consider the space C(p, q) of all possible curves on M that

connects p and q, and define the distance function by

d(p, q) = inf
γ∈C(p,q)

L(γ).

One can verify that d is indeed a distance function, i.e. it satisfies

1) d(p, q) = d(q, p) ≥ 0 for any p, q ∈M ,

2) d(p, q) = 0 iff p = q,
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3) d(p, q) ≤ d(p, r) + d(r, q) for any p, q, r ∈M .

It takes some efforts to prove item 2). One needs to show that since the metric is smooth,

locally the metric g = gijdx
idxj and the standard one g0 =

∑
i dx

idxi are equivalent. In

fact, we have the following theorem.(cf. [3], page 94)

Theorem 4.1.9 The topology of the manifold M coincides with the topology induced by the

distance function d.
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4.2 Hodge theorem

4.2.1 Hodge star operator

For an n-dimensional vector space V , since the dimension of ΛpV and Λn−pV are equal

Cp
n = Cn−p

n , one may wonder if there is an canonical isomorphism between these two linear

spaces. This is indeed the case if V is endowed with an inner product structure.

Fixing an orientation and hence a volume form dv, the Hodge star operator is the linear

operator

∗ : ΛpV → Λn−pV, η 7→ ∗η

such that the n-form

ω ∧ (∗η) = 〈ω, η〉dv, ∀ω ∈ ΛpV.

Note that we need an orientation on V to assign the volume form. As an easy corollary, we

have ∗1 = dv and

ω ∧ (∗ω) = 〈ω, ω〉dv, ∀ω ∈ ΛpV.

More explicitly, if {e1, · · · , en} ∈ V ∗ is an oriented orthonormal basis of V ∗ such that

dv = e1 ∧ · · · ∧ en. Then we have

∗(e1 ∧ · · · ∧ ep) = ep+1 ∧ · · · ∧ en.

It is easy to verify that

∗ ◦ ∗ = (−1)p(n−p)idp.

Exercise 4.2.1 Prove the above identity.

4.2.2 Co-differential operator

On an oriented Riemannian manifold M with a metric g, the Hodge star operator is

point-wisely well-defined on each cotangent space T ∗pM,∀p ∈ M . Thus we have a global

operator ∗ : Λp(M)→ Λn−p(M).

We can also introduce an inner product on Λp(M) by letting

(ω, η) :=

∫
M

〈ω, η〉dv =

∫
M

ω ∧ (∗η).
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Recall that there is an exterior differential operator d : Λp(M) → Λp+1(M). Using the

star operator, one can define an adjoint operator δ : Λp(M)→ Λp−1(M) by setting

δ = (−1)n(p+1)+1 ∗ ◦d ◦ ∗.

Theorem 4.2.2 For a compact Riemannian manifold M without boundary and ω ∈ Λp(M)

and η ∈ Λp+1(M),

(dω, η) = (ω, δη).

Proof. First, we have

d(ω ∧ ∗η) = dω ∧ ∗η + (−1)pω ∧ (d ◦ ∗η).

Applying Stoke’s theorem, we get

(dω, η) =

∫
M

dω ∧ ∗η = (−1)p+1

∫
M

ω ∧ (d ◦ ∗η).

But for d ◦ ∗η ∈ Λn−p(M),

d ◦ ∗η = (−1)p(n−p) ∗ ◦ ∗ ◦d ◦ ∗η = (−1)−p
2+1 ∗ ◦δη.

Since p(p+ 1) is even, the theorem follows. �

Remark 4.2.3 Actually, we have an invariant formula for ω ∈ Λp(M) as follows

δω(·) = −divω(·) = −∇eiω(ei, ·),

where ∇ is the Levi-Civita connection. In particular, for a one form α = aidx
i, we have

δα = −divα = −gijai,j.

Applying the Hodge star operator, we get

∗ ◦ δα = −d ◦ ∗α = − ∗ divα = −divαdv.
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Therefore, by the Stoke’s formula, we have∫
M

divαdv =

∫
∂M

∗α.

4.2.3 Hodge theorem

The Hodge Laplacian operator ∆ : Λp(M)→ Λp(M) for p-forms is defined by

∆ = δ ◦ d+ d ◦ δ.

A p-form ω is called harmonic if ∆ω = 0. Since

(∆ω, ω) = (dω, dω) + (δω, δω),

we see that ω is harmonic iff dω = 0 and δω = 0. Moreover, the Laplacian operator is

self-adjoint, i.e.

(∆ω, η) = (ω,∆η).

Remark 4.2.4 For 0-forms f ∈ Λ0(M) = C∞(M), the Hodge Laplacian is

∆f = δ ◦ df,

which differs from the trace Laplacian by a minus sign. Thus the Hodge Laplacian is a

generalization of classical Laplacian operator on forms.

Theorem 4.2.5 (Hodge theorem) There is a unique harmonic p-form in each equivalent

class in the de Rham cohomology group Hp
d(M),∀1 ≤ p ≤ n.

In fact, the exterior space have the following decomposition

Λp(M) = Im(∆p)⊕Ker(∆p) = Im(dp−1)⊕ Im(δp+1)⊕Ker(∆p).

Therefore, if we define the Hodge cohomology

Hp(M) = Ker(∆p) = {ω ∈ Λp(M) : ∆ω = 0},
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then we have an isomorphism between the Hodge cohomology and the de Rham cohomology.

Remark 4.2.6 Recall that the de Rham cohomology is isomorphic to the singular cohomolo-

gy, which is entirely a topological invariant. Thus, for a differentiable manifold, we can apply

the powerful machinery of a Riemannian metric to investigate the topological information.

This is perhaps one of the most important goals of Riemannian geometry.
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5.1 Linear connection

5.1.1 Directional derivative and linear connection

We first review the classical directional derivatives on Euclidean space, then introduce

the concept of linear connections on manifolds.

Given a point x ∈ Rn and a vector v ∈ TxRn = Rn, the directional derivative of a vector

field (that is, a vector-valued function) Y is given by

DvY (x) =
d

dt

∣∣∣
t=0
Y (x+ tv) = lim

t→0

Y (x+ tv)− Y (x)

t
.

The operator D satisfies Leibniz’s rule for Y , i.e.

Dv(fY ) = Dvf · T + f ·DvT,

and is linear on v.

One way of taking derivatives of two vector fields on a differentiable manifold M is the

Lie derivative. Recall that the Lie derivative of two vector fields X, Y ∈ X(M) by

LXY (x) =
d

dt

∣∣∣
t=0

(φ−t)∗ ◦ Y (t) = lim
t→0

(φ−t)∗ ◦ Y (φt(x))− Y (x)

t
= [X, Y ],

where φt is the one-parameter group of diffeomorphisms generated by X. The Lie derivative

satisfies the Leibniz’s rule for Y , i.e.

LX(fY ) = X(f)Y + fLXY.

However, to define the Lie derivative LXY (x), we need X to be defined on a neighborhood

of x. The problem is that we use X to define φt, and hence the mapping (φt)∗ between

different tangent spaces. Thus the Lie derivative is essentially different from the classical

directional derivative.

To solve the problem, the key is to find a way to connect different tangent spaces. There

are many different ways to assign such a connection. One short-cut is to put the most desired

properties directly in our definition, as follows.
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Definition 5.1.1 A linear connection is a linear operator

D : X(M)× X(M)→ X(M),

(X, Y ) 7→ DXY

which satisfies, for any f ∈ C∞(M),

(1) Leibniz’s rule on Y :

DX(fY ) = X(f) · Y + f ·DXY.

(2) C∞-linear (or tensorial) on X:

DfXY = fDX .

Property (2) in the above definition guarantees that DXY (x) only depends on X(x)

(instead of the value of X in a neighborhood). It also allows us to view D as a covariant

derivative operator

D : X(M)→ X(M)⊗ Λ1(M),

Y 7→ DY,

such that (DY )(X) = DXY .

For a smooth function f ∈ C∞(M), we will denote Df = df and

DXf = df(X) = X(f).

The connection naturally extends to 1-forms by requiring the Leibniz’s rule

DX(ω(Y )) = DXω(Y ) + ω(DXY ).

Or equivalently,

DXω = DX ◦ ω − ω ◦DX = [DX , ω].

Moreover, we can extend D to a differential operator on tensors

D : X(M)×T (M)→ T (M)
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by letting

DX(V1 ⊗ · · · ⊗ Vr ⊗ ω1 ⊗ · · · ⊗ ωs)

= DXV1 ⊗ · · · ⊗ Vr ⊗ ω1 ⊗ · · · ⊗ ωs + · · ·+ V1 ⊗ · · · ⊗ Vr ⊗ ω1 ⊗ · · · ⊗DXω
s.

Exercise 5.1.2 Show the existence of at least one linear connection on a manifold.

(Hint: first define trivial linear connections in local charts, then use partition of unity.)

5.1.2 Connection coefficients and connection forms

Now we discuss local expressions of a linear connection D. Locally in a neighborhood

x ∈ U ⊂ M , suppose {ei} ⊂ Γ(TU) is a local frame and {δi} its dual. Suppose X = aiei

and Y = bjej are two vector fields, then

DXY = aiDi(b
jej) = ai(∂ib

jej + bjDiej),

where use the notation Di = Dei and ∂i = ∂ei . Thus the linear connection D is completely

determined by Diej. Since Diej is still a tangent vector, we can write

Diej = Akijek, (5.1)

where {Akij} are locally defined smooth functions. Alternatively, we can write

Dej = Diej ⊗ δi = Akijδ
i ⊗ ek.

In this way, we locally identify D with a matrix-valued connection 1-form

A = Aiδ
i = (Akij)δ

i

where Ai = (Akij)1≤j,k≤n is n × n matrix for each i = 1, · · · , n. Thus locally we can simply

denote D = d+ A such that

DX = D(X iei) = (dXk +XjAkijδ
i)⊗ ek = (d+ A)X.

Next we study the transformation law of connection 1-forms under a change of local
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frames. Suppose for a different choice of local frame ēj = sijei, the connection 1-form of D

becomes Ā = Āiδ̄
i. If we write in matrix form ē = Se where S = (sij) ∈ GL(n), then

Dē = Āē = D(Se) = dSe+ SAe = dS ◦ S−1ē+ S ◦ A ◦ S−1ē.

It follows

Ā = −S ◦ dS−1 + S ◦ A ◦ S−1. (5.2)

Therefore a linear connection D is equivalent to a set of local connection 1-forms {Aα}
subordinating to an open cover {Uα}, which satisfies the above transformation law (5.2) on

overlap area. In particular, the connection form A is not a globally defined tensor, but the

difference of two connection forms is.

Remark 5.1.3 Note that the locally expressions of D can vary for different types of tensors.

For example, since

0 = Di(δ
k(ej)) = (Diδ

k)(ej) + δk(Diej),

we get for 1-forms,

Diδ
k = −Akijδj.

5.1.3 Parallel transport

Now we explain the relation of linear connections with the classical directional deriva-

tives.

Let D be a linear connection on M . Suppose γ is a curve on M with γ(0) = p ∈ M ,

and X ∈ X(M) is a vector field. We say X is parallel along γ if

∇tX = ∇γ′X(γ(t)) = 0.

In local coordinates, if X(t) = ai(t)∂i and γ′(t) = bj∂j, then we require

∇tX =

(
dai

dt
+ ajbkΓijk

)
∂i = 0.

This is a first-order ordinary equation and have a unique solution for any initial data X(0) =

v ∈ TpM .
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Now given a curve γ starting from p ∈M , we can define the parallel transport

Pt : TpM → Tγ(t)M, v 7→ Pt(v)

by requiring Pt(v) to be parallel to v along γ. Obviously, Pt is a linear in view of the ODE

theory. Moreover, the parallel transport along γ in the opposite direction gives an inverse of

Pt. Thus Pt is a linear isomorphism. Note the dependence of Pt on the curve γ here, which

is essentially different from the Euclidean space.

Theorem 5.1.4 The linear connection D satisfies

DvY (x) =
d

dt

∣∣∣
t=0
P−1
t ◦ Y (t) = lim

t→0

P−1
t ◦ Y (γ(t))− Y (p)

t
. (5.3)

Proof. Let γ be a smooth curve with γ(0) = x and γ′(0) = v. Let {ei} ⊂ TxM be a set

of frame at x. By parallel transport along γ, we get a moving frame {ēi(t) := Pt(ei)} on γ

which is satisfies Dtēi = 0.

Now suppose Y (t) = bi(t)ēi(t) along γ. Then we have

DvY (x) = Dt(b
iēi)|t=0 = ∂tb

i(0)ei.

One the other hand, we have

P−1
t ◦ Y (t) = bi(t)P−1

t (ēi(t)) = bi(t)ei.

Therefore, we get
d

dt

∣∣∣
t=0
P−1
t ◦ Y (t) = ∂tb

i(0)ei,

and the theorem follows. �

Remark 5.1.5 Actually, given a parallel transportation map which satisfies suitable condi-

tions, then we can define the linear connection by (5.3). (Cf. Wu)
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5.1.4 Torsion tensor

First recall that the Hessian of a smooth function f on Rn is simply defined as the

symmetric matrix

D2f =

(
∂2f

∂xi∂xj

)
.

The Hessian of a function f ∈ C∞(M) with regard to a linear connection D is defined by

the (0, 2)-tensor D2f = D ◦Df . Given X, Y ∈ X(M), by the Leibniz’s rule,

DY (Df(X)) = (DYDf)(X) +Df(DYX).

It follows

D2f(X, Y ) := (DYDf)(X) = DYDXf −DDYXf = Y ◦X(f)− (DYX)(f).

Interchanging X and Y , we get

D2f(Y,X) = X ◦ Y (f)− (DXY )(f).

The difference of the above two terms is

D2f(X, Y )−D2f(Y,X) = (DXY −DYX − [X, Y ])f.

Thus we are led to define the operator T : X(M)× X(M)→ X(M) by

T (X, Y ) = DXY −DYX − [X, Y ],

it is easy to verify that T is a skew-symmetric (1, 2)-tensor. We call T the torsion tensor

of the linear connection D. Obviously, the Hessian D2f is symmetric iff the torsion tenor T

vanishes.

Remark 5.1.6 Note that the following Leibniz’s rule is false

DY (X(f)) = Y ◦X(f) 6= (DYX)f +X(DY (f)).
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In fact,

DY (X(f)) = DY (Df,X) = (DYDf,X) + (Df,DYX).

Exercise 5.1.7 In a local frame {ei}, find the local expression of the torsion tensor T in

terms of the connection coefficients {Akij} of D.
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5.2 Levi-Civita connection

5.2.1 Definition

There are infinitely many (even torsion free) linear connections on a given manifold. If

the manifold is endowed with a Riemannian metric, then we will see that there is a canonical

linear connection on the Riemannian manifold.

Definition 5.2.1 The Levi-Civita connetion of a Riemannian manifold (M, g) is a linnear

connection ∇ satisfying

1) (torsion free) T (X, Y ) = ∇XY −∇YX − [X, Y ] = 0,∀X, Y ∈ X(M),

2) (compatible with the metric) ∇g = 0.

Note that the torsion-free property gives

∇XY −∇YX = [X, Y ].

And compatibility with g is equivalent to

∇X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉, ∀X, Y, Z ∈ X(M).

Equivalently, if we choose an orthonormal frame {ei} such that ∇iej = Akijek, then

0 = ∇i〈ej, ek〉 = 〈∇iej, ek〉+ 〈ej,∇iek〉 = Akij + Ajik.

Thus Akij = −Ajik is a skew-symmetric matrix for each i. In other words, the connection

form in an orthonormal frame is a so(n)-valued 1-form.

The Levi-Civita connection is particularly important because of the following theorem.

Theorem 5.2.2 There exists a unique Levi-Civita connection ∇ on every Riemannian man-

ifold (M.g).
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Proof. It suffices to verify that a Levi-Civita connection is determined by the formula

2〈∇XY, Z〉 =X〈Y, Z〉+ Y 〈Z,X〉 − Z〈X, Y 〉

+ 〈[X, Y ], Z〉 − 〈[Y, Z], X〉+ 〈[Z,X].Y 〉.
(5.4)

�

As before, the Levi-Civita connection and the covariant derivative can be extended to

any tensor

∇ : T (M)→ T (M)⊗ Λ1(M), T 7→ ∇T = ∇iT ⊗ δi.

Exercise 5.2.3 Let (M, g) be a Riemannian manifold and D be a linear connection. Show

that the parallel transport induced by D is an isometry if and only if D is compatible with g.

5.2.2 Christoffel symbols

In local coordinates, the connection coefficients of the Levi-Civita connection in natural

frame {∂i := ∂
∂xi
}, which is also known as the Christoffel symbols, are given by

∇i∂j = Γkij∂k.

Then for 1-forms, we have

∇idx
k = −Γkijdx

j.

By torsion-freeness, we have

0 = [∂i, ∂j] = ∇i∂j −∇j∂i = (Γkij − Γkji)∂k.

By compatibility with the metric, we have

∂igjk = ∇i〈∂j, ∂k〉 = 〈∇i∂j, ∂k〉+ 〈∂j,∇i∂k〉 = gklΓ
l
ij + gjlΓ

l
ik.

It follows that the Christoffel symbol is symmetric for fixed k, i.e. Γkij = Γkji and

Γkij =
1

2
gkl (∂igjl + ∂jgil − ∂lgij) . (5.5)
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Note that the connection 1-form Γ = Γkijdx
i changes by the transformation law (5.2) under

changes of coordinates.

Using the Christoffel symbol, we can write down the Hessian of a function

∇2f = (∂i∂jf − Γkij∂kf)dxi ⊗ dxj.

Taking the trace of the Hessian, we get the Laplacian

∆f = trg∇2f = gij(∂i∂jf − Γkij∂kf).

5.2.3 Examples

Here we present some basic examples of Riemannian manifolds. Note that the metric

and the Levi-Civita connection has different coefficients in different coordinates.

Example 5.2.4 For the two dimensional Euclidean space R2, the Levi-Civita connection

is just the standard derivative. In the Cartesian coordinates we have g0 = dx2 + dy2 and

the Christoffel symbol vanishes. However, if we choose the polar coordinates (r, θ), then the

metric becomes g0 = dr2 + r2dθ2. With a simple computation by using (5.5), it follows that

the non-vanishing Christoffel symbols are

Γθrθ = Γθθr =
1

r
, Γrθθ = −r.

Hence the Laplacian of a smooth function f is

∆f = ∂2
rf +

1

r
∂rf +

1

r2
∂2
θf.

Generally, if a metric is given by g = dr2 +φ2(r)dθ2, which is sometimes called wrapped

metric. Then the Christoffel symbols are given by

Γθrθ = Γθθr =
φ′

φ
, Γrθθ = −φ′φ.

Hence the Laplacian of a smooth function f is

∆f = ∂2
rf +

φ′

φ
∂rf +

1

φ2
∂2
θf.
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Remark 5.2.5 Here is another explanation for the above example. It is easy to see that

X = 1
φ
∂θ is parallel along ∂r. Thus

∇r∂θ = ∇r(φX) = φ′X =
φ′

φ
∂θ.

On the other hand,

Γrθθ = 〈∇θθ, ∂r〉 = −〈∂θ,∇θ∂r〉 = −φ2Γθθr.

Definition 5.2.6 Let (M, g) be a Riemannian manifold, a metric h is called (point-wisely)

conformal to g if h = λg for some positive function λ ∈ C∞(M).

Definition 5.2.7 Let (M, g) and (N, h) be two Riemannian manifolds and F : M → N be

a map. F is called a conformal map if the pull-back metric F ∗h = λg is conformal to g.

Now suppose h = λg is conformal to g and denote the Christoffel symbols of h and g

by Γ̃kij and Γkij respectively. It is easy to verify that

Γ̃kij = Γkij +
1

2
(δkj ∂iλ+ δki ∂jλ− gijgkl∂lλ).
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5.3 Geodesics

5.3.1 Definition and examples

Definition 5.3.1 A smooth curve γ : [a, b] → M is called a geodesic if it satisfies the

equation

∇γ′γ
′ = 0.

Locally, set γ(t) = (x1(t), · · · , xn(t)), the equation of geodesic has the form

d2xk

dt2
+ Γkij

dxi

dt

dxj

dt
= 0,

where Γkij are the Christoffel symbols. This is a second order ODE system. By standard

ODE theory, it has a unique local solution γ on an interval [0, T ) if it is supplemented by

initial data

γ(0) = p, γ′(0) = v ∈ TpM.

Moreover, the solution γ and the survival time T depends smoothly on the initial data.

Lemma 5.3.2 Suppose γ is a smooth curve on (M, g), and V,W are parallel vector fields

along γ, then
d

dt
〈V,W 〉 = 0.

Proof. Since V,W are parallel, ∇γ′V = ∇γ′W = 0. It follows from the compatibility of

Levi-Civita connection that

d

dt
〈V,W 〉 = 〈∇γ′V,W 〉+ 〈V,∇γ′W 〉 = 0.

�

Corollary 5.3.3 If γ is a geodesic, then γ′ is parallel along γ and |γ′| = c is constant.

From the above proposition, we can see that if a curve is a geodesic, then its parametriza-

tion has to be proportional to its arclength parameter. But this does not add extra con-

straints on the curve, since any curve can be parameterized by its arclength. In fact, for

γ : [a, b]→M , we can let

s := a+

∫ t

a

|γ′|dt.
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Then under the new parameter s, γ is a map γ : [0, l]→M with l its length, and∣∣∣∣dγds
∣∣∣∣ =

∣∣∣∣dγdt
∣∣∣∣ ∣∣∣∣ dtds

∣∣∣∣ = 1.

Example 5.3.4 1. Euclidean space (Rn, g0):

Since the standard connection D on Rn is trivial, the Christoffel symbols vanish, and

the equation is reduced to

d2xk

dt2
= 0, xi(0) = bi,

dxi

dt
(0) = ai.

It has a unique solution which is just a linear function γ(t) = a · x+ b. Thus geodesics

in Rn are just straight lines.

2. Torus (T n = Rn/(Z2)n, g0):

The metric are still flat and geodesics are straight lines. However, since for each

p, q ∈ T n, there are infinitely many preimages in the covering space Rn, there are

infinitely many lines which connects p and q.

3. Sphere (Sn, g0):

Using the embedding Sn ⊂ Rn+1, the Levi-Civita connection on Sn can be expressed by

∇XY = (DXY )>,∀X, Y ∈ (X)(Sn).

Then one can easily verify that geodesics on Sn are great circles. Observe that there

are infinitely many great circles connecting antipodal points p,−p ∈ Sn. Otherwise, for

general two points p, q ∈ Sn, there is a unique great circle connecting p and q, which

is divided into two segments.

4. Hyperbolic space (H, g) (where H is the half plane and g = 1
(xn)2

∑n
i=1(dxi)2):

Geodesics in the half plane model are semi-circles which are orthogonal to the hyper-

plane {xn = 0}.
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5.3.2 First variation formula

We have seen that geodesics on Riemannian manifolds are natural generalization of

straight lines in Euclidean spaces. In fact, we will show that the shortest curve between two

points are geodesics.

Given a smooth curve γ : [a, b]→M , its length is defined by

L(γ) =

∫ b

a

|γ′|dt.

Then we define the distance of p, q ∈M by

dist(p, q) = inf{L(γ)|γ : [a, b]→M,γ(a) = p, γ(b) = q}.

Thus if γ attains the distance of p, q, then it must be a critical point of the length functional

L.

Thus we choose a variation β : [a, b] × (−ε, ε) → M , i.e. is a family of smooth curves

γs(t) = β(t, s) : [a, b]→M . Then we compute

d

ds
L(γs) =

d

ds

∫ b

a

|∂tβ|dt

=

∫ b

a

1

|∂tβ|
〈∇s∇tβ,∇tβ〉dt

=

∫ b

a

1

|∂tβ|
〈∇t∇sβ,∇tβ〉dt

=

∫ b

a

1

|∂tβ|
(∂t〈∇sβ,∇tβ〉 − 〈∇sβ,∇t∇tβ〉) dt

Therefore, if |γ′| = l is constant, and we denote V := ∂sβ|s=0, which is a vector fields along

γ, then
d

ds

∣∣∣
s=0

L(γs) =
1

l

(
〈V, γ′〉|ba −

∫ b

a

〈V,∇γ′γ
′〉dt
)
.

Theorem 5.3.5 Suppose γ : [0, l] → M is a shortest curve connecting q, a ∈ M and is

parameterized by its arclength, then γ is a geodesic.
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Proof. Let γs(t) = β(t, s) : [0, l]× (−ε, ε)→M be a family of smooth curves connecting p

and q. Then β(0, s) = p, β(l, s) = q, hence V (0) = 0, V (1) = 0. Then by the first variational

formula, we have
d

ds

∣∣∣
s=0

L(γs) =

∫ b

a

〈V,∇γ′γ
′〉dt = 0.

Since the equality holds for any V , it follows ∇γ′γ
′ = 0. �
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5.4 Exponential map

5.4.1 Definition of exponential map

Suppose for v ∈ TpM , there is a radial geodesic γ : [0, 1] → M such that γ(0) =

p, γ′(0) = v, then we can define a map from v to γ(1) ∈ M . The following lemma, which

is a direct conclusion from ODE theory, says this map is always well-defined in a small

neighborhood.

Lemma 5.4.1 Given a fixed point p0 ∈ M , there exists a neighborhood U and a small

number ε > 0, such that for all p ∈ U and v ∈ TpM , |v| ≤ ε, there is a unique geodesic

γv : (−ε, ε)→M satisfying γv(0) = p and γ′v(0) = v.

Definition 5.4.2 For each p ∈M , the exponential map expp : U →M is a map defined on

a neighborhood U ⊂ TpM such that expp(v) = γv(1), ∀v ∈ U .

An easy observation is that (using uniqueness of geodesics)

expp(tv) = γtv(1) = γv(t), ∀t ∈ [0, 1], v ∈ TpM.

By the above lemma, the exponential map is well-defined in a small ε-ball centered at

the origin in TpM . Therefore, we can use the exponential map to define a normal coordinate

in a neighborhood of p. Namely, we have a local chart (U, exp−1
p ; yi) where (y1, · · · , yn) is

the Cartesian coordinates on TpM .

However, ε is dependent on the base point p. Also, in general it is not known if it exists

in a large domain. A simple example is the incomplete space Rn \ {O}.

Example 5.4.3 1. exponential map for matrices.

expI(A) = exp(A) =
∞∑
k=0

1

k!
Ak,∀A ∈Mn.

2. exponential map for S1.

exp0 x = exp(ix),∀x ∈ R1.
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5.4.2 Gauss lemma

Lemma 5.4.4 The radial geodesics from a point p ∈ M are orthogonal to distance spheres

around p.

Proof. It suffices to show that the radial geodesic is orthogonal to any curve on the distance

sphere.

Let v(s) be a curve on the distance sphere of radius a > 0, namely, |v(s)| = a. Define

f(r, s) = expp(rv(s)). Then by definition, γs(r) = f(r, s) is a radial geodesic and ∇rf =

γ′s = v(s). Then we compute

∂r〈∇rf,∇sf〉 = 〈∇r∇rf,∇sf〉+ 〈∇rf,∇f∇sf〉

= 〈∇rf,∇s∇rf〉 =
1

2
|∇rf |2 = 0.

Thus 〈∇rf,∇sf〉 is constant along r.

On the other hand, at the origin where r = 0, since f(0, s) = p, we have ∇sf(0, s) = 0.

Therefore,

〈∇rf,∇sf〉(r, s) = 〈∇rf,∇sf〉(0, s) = 0.

�

As a consequence of the Gauss lemma, we can find a geodesic polar coordinate around

a point p ∈M such that

g = dr2 +
n−1∑
i,j=1

gij(r, θ)dθ
idθj.

Lemma 5.4.5 Suppose Bε(0)→M is an embedding, then

1. For all v ∈ Bε(0), let γv(t) = expp(tv) : [0, 1] → M and q = γv(1). Then γv is the

unique curve satisfying

L(γv) = d(p, q) = |v|.

In particular, γv is the unique geodesic connecting p and q.

2. For all q /∈ Bε(p), then exists q′ ∈ ∂Bε(0) such that

d(p, q) = ε+ d(q′, q) = d(p, q′) + d(q′, q).
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w

expp

O

TpM

M
γv

(expp)∗(w)

v

p

Figure 5.1: Gauss Lemma

Proof. (1) Let σ : [0, 1]→M be a curve connecting p and q. Denote the distance function

r(x) = d(p, x), . Since |∇r| = |∂r| = 1, we have

|σ′| ≥ 〈σ′,∇r〉 =
d

dt
r ◦ σ(t).

It follows �

5.4.3 Hopf-Rinow theorem

5.4.4 Normal coordinates

In Euclidean space, there is a natural choice of coordinates, namely, the Cartesian coor-

dinate, by fixing a set of orthonormal basis at the origin. Then in this Cartesian coordinates,

lines are represented by linear functions. Here we want to find an analog in a Riemannian

manifold. It turns out that the exponential map provides us a natural choice.
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Normal coordinates

Let (M, g) be a Riemannian manifold and p ∈M . Suppose U ∈ TpM is a neighborhood

of the origin such that expp : U → V is a diffeomorphism for some neighborhood V ⊂M of

p. The tangent space is linear space and we can define a Cartesian coordinate by fixing an

orthonormal basis {ei}ni=1 ⊂ TpM . Namely, we define a linear map σ : TpM → Rn by letting

σ(ei) = (0, · · · , 1, · · · , 0). Then for any v = viei ∈ TpM , we haveσ(v) = (v1, · · · , vn). Set

φ := σ◦exp−1
p , then (V, φ;xi) is a local chart around p, which is called the normal coordinate.

Lemma 5.4.6 If g(x) = gij(x)dxidxj in the normal coordinate, then at the base point p,

1. gij(0) = δij;

2. Γkij(0) = 0;

3. ∂kgij(0) = 0.

Proof.

1. gij(0) = g(∂i, ∂j) = g(ei, ej) = δij.

2. In the normal coordinate, for any v = viei ∈ TpM , the radial geodesic γv(t) = expp(tv)

has the expression φ ◦ γv(t) = (tv1, · · · , tvn). Using the equation of geodesics, we have

0 = ∇2
tγ =

d2xk

dt2
+ Γkij(x)

dxi

dt

dxj

dt
.

Since xi = tvi is linear, we get Γkij(tv)vivj = 0. Evaluating at t = 0 we have Γkij(0)vivj =

0. Since it holds for all v, we get Γkij(0) = 0.

3. It follows directly from the formula

∂kgij = ∂kg(∂i, ∂j) = g(∇k∂i, ∂j) + g(∂i,∇k∂j) = Γlkiglj + Γlkjgil.

�

It follows from the above lemma and Taylor expansion that, in the normal coordinates

g(x) = gRn +O(|x|2).
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More precisely, we have

gij(x) = δij +
1

2
∂k∂lgijx

kxl +O(|x|3).

We will see that the second order term is determined by the curvature tensor in Section...

Geodesic polar coordinate

If we choose the polar coordinate on TpM instead of the Cartesian coordinate, then we

get the geodesic polar coordinate. More precisely, let σ̄ : TpM\{0} → R1
+×Sn−1, σ̄(v) = (r, θ)

where r = |v| and θ = (θ1, · · · , θn−1) are standard spherical coordinates in Sn−1. Let

φ̄ = σ̄ ◦ exp−1
p , then (V, φ̄; (r, θ)) is a local chart around p and is called the geodesic polar

coordinate.

Lemma 5.4.7 In the geodesic polar coordinates, the metric has the form

g(r, θ) = dr2 +
n−1∑
i,j=1

gij(r, θ)dθ
idθj.

Proof. It suffices to prove that grθi = 0 and grr = 1. The first identity follows directly

from the Gauss Lemma. For the second one, observe that any point q = expp(v) ∈ V where

v = σ̄−1(r0, θ0), let e = v/|v| be the corresponding unit vector and γe(t) = expp(te) be

the radial geodesic. Then the tangent vector ∂r at q is just the derivative of γe at t = r0.

Therefore, we have

|∂r| = |γ′e(r0)| = |γ′e(0)| = |(expp)∗|0(e)| = |e| = 1.

�

A important consequence of the lemma is ∇r = ∂r. Since r(q) = d(q) = dist(p, q) we

know that |∇d| = |∂r| = 1 (in a injective area).

From the fact that g(x) = gRn +O(|x|2) and gRn = dr2 +r2gSn−1 , we find that the second

term in the above has the form

n−1∑
i,j=1

gij(r, θ)dθ
idθj = r2gSn−1 +O(r2).
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5.5 Curvature

5.5.1 Definition and symmetries of curvature tensor

Recall that the double covariant derivative is defined by

∇2
X,Y = ∇x∇Y −∇∇XY

and is applicable to any tensor. Since the Levi-Civita is torsion free, the double derivative

of a function commutes, i.e.

∇2
X,Y f = ∇2

Y,Xf, ∀X, Y ∈X (M).

However, this is not the case for general tensors, and the curvature is just the communicator.

Definition 5.5.1 The curvature of a connection is a (1, 3)-tensor defined by

R

∣∣∣∣∣∣X(M)× X(M)× X(M) →X(M)

(X, Y, Z) 7→R(X, Y )Z = ∇2
X,YZ −∇2

Y,XZ

By definition of the double derivative, it is equivalent to define

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

It is easy to verify that R is indeed a tensor. By raising the index, it also gives a

(0, 4)-tensor. However, it differs from the (1, 3)-tensor by a minus sign.

Definition 5.5.2 The curvature (0, 4)-tensor is

R(X, Y, Z,W ) = 〈R(X, Y )W,Z〉.

In local coordinates, we set R(∂i, ∂j)∂k = Rl
ijk∂l and

Rijkl = R(∂i, ∂j, ∂k, ∂l) = −〈R(∂i, ∂j)∂k, ∂l〉 = −Rm
ijkgml.
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Pay attention to the minus sign here, or one will get negative curvature for spheres. By the

definition of the curvature, one can verify that

Rl
ijk = ∂iΓ

l
jk − ∂jΓlik + ΓlimΓmjk − ΓljmΓmik. (5.6)

In particular, in normal coordinates of a fixed point p ∈M , we have gij(p) = δij, ∂kgij(p) =

0,Γkij(p) = 0. Recall that

Γkij =
1

2
gkl(∂igjl + ∂jgil − ∂lgij),

it follows that at p,

−Rijkl = Rl
ijk = ∂iΓ

l
jk − ∂jΓlik =

1

2
(∂i∂kgjl − ∂i∂lgjk − ∂j∂kgil + ∂j∂lgik). (5.7)

Thus R is completely determined by the second order derivatives of gij. In fact, the converse

is also true. Namely, we have

1

2
∂k∂lgij =

1

3
(Rkijl +Rlijk).

This is exactly the way Riemann originally defined the curvature tensor.

The the symmetry of R is obvious from the expression (5.7), namely, we have

Rijkl = −Rjikl = −Rijlk = Rklij

and the first Bianch identity

Rl
ijk +Rl

jki +Rl
kij = 0. (5.8)

Or equivalently, we have

R(X, Y, Z,W ) = R(Z,W,X, Y ) = −R(Y,X,Z,W ) = −R(X, Y,W,Z).

and

R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0.
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Actually, the covariant derivative ∇R also another symmetry. To see this, we compute

in normal coordinate that

∇jR
l
jkm = ∂i∂jΓ

l
km − ∂i∂kΓljm.

Thus we get the second Bianchi identity:

∇iR
l
jkm +∇jR

l
kim +∇kR

l
ijm = 0. (5.9)

or equivalently,

∇XR(Y, Z)W +∇YR(Z,X)W +∇ZR(X, Y )W = 0.

5.5.2 Other curvatures

The Ricci curvature is a (1, 1)-tensor defined by taking trace ofR, i.e. for an orthonormal

basis {Ei},

Rc(X) =
n∑
i=1

R(X,Ei)Ei.

It also gives a symmetric (0, 2)-tensor by

Ric(X, Y ) =
n∑
i=1

R(Ei, X,Ei, Y ) = 〈Ric(X), Y 〉.

In local coordinates,

Ric = Rij = gklRkilj = Rk
kij, Rc = Rj

i = gjkRik.

The scalar curvature is the trace of Ricci curvature, i.e.

R =
n∑
i=1

Ric(Ei, Ei) =
n∑

i,j=1

R(Ei, Ej, Ei, Ej).

In local coordinates,

R = trRic = Ri
i = gijRij = gijgklRikjl.
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Taking trace w.r.t. i and l in (5.9), we get

∇iR
i
jkm −∇jRkm +∇kRjm = 0.

Taking another trace w.r.t. k and m, we get

∇iR
i
j −∇jR +∇kR

k
j = 0.

Here we used the fact that the covariant derivative commutes with trace, i.e. ∇◦ tr = tr ◦∇.

Therefore, we arrive at

divRic =
1

2
dR.

The sectional curvature assigns a real number to each 2-plane in the tangent space by

S(X, Y ) =
R(X, Y,X, Y )

|X ∧ Y |2
=

〈R(X, Y )Y,X〉
|X|2|Y |2 − 〈X, Y 〉2

.

Obviously, S(X, Y ) only depends on the 2-plane Π spanned by X, Y . Evidently, it is the

Gauss curvature of the 2-submanifold that is tangent to Π(X, Y ). In fact, the sectional

curvatures determines the full curvature tensor.

Proposition 5.5.3 Let R and R′ be two (0, 4)-curvature tensors which satisfies S(Π) =

S ′(Π) for all 2-planes Π ⊂ TpM . Then R = R′.

5.5.3 Example

As an example, we compute the curvature of the 2 dimensional manifold with wrapped

product metric g = dr2 + φ2(r)dθ2.

Example 5.5.4 Suppose (M, g) is a two manifold where g = dr2 + φ2(r)dθ2 (in geodesic

polar coordinate).

First we compute the Christoffel symbols. Since ∂r is parallel with |∂r| = 1, we have

Γrrr = Γθrr = 0. Let X = 1
φ
∂θ, then |X| = 1

φ2
〈∂θ, ∂θ〉 = 1. By Gauss lemma 〈∂r, X〉 = 0, thus

∇rX = 0 and X is also parallel along r. Then we can compute

∇r∂θ = ∇r(φX) = φ′X =
φ′

φ
∂θ.
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It follows Γθrθ = φ′/φ and Γrrθ = 0. On the other hand,

〈∇θ∂θ, ∂θ〉 =
1

2
∂θ〈∂θ, ∂θ〉 =

1

2
∂θφ

2 = 0,

and

〈∇θ∂θ, ∂r〉 = −〈∂θ,∇θ∂r〉 = −φ2Γθθr.

It follows Γθθθ = 0 and Γrθθ = −φ′φ.

Now we can compute the curvature. By (5.6), we have

Rθ
rθr = ∂rΓ

θ
θr − ∂θΓθrr + ΓθrpΓ

p
θr − ΓθθpΓ

p
rr

= ∂rΓ
θ
θr + ΓθrθΓ

θ
θr

= ∂r

(
φ′

φ

)
+

(
φ′

φ

)2

=
φ′′

φ
.

It follows Rrθrθ = −gθθRθ
rθr = −φ′′φ. Therefore

S(∂r, ∂θ) =
Rrθrθ

|∂r|2|∂θ|2 − 〈∂r, ∂θ〉2
= −φ

′′

φ
.

As a consequence, we now know the curvature of the standard space forms:

1. Euclidean space (R2, g = dr2 + r2dθ2). Since φ(r) = r, φ′′(r) = 0, it has constant

curvature 0.

2. Standard sphere (S2, g = dr2 + sin2 rdθ2). Since φ(r) = sin r, φ′′(r) = − sin r, it has

constant curvature 1.

3. Hyperbolic space (B1, g = dr2 + sinh2 rdθ2) (disk model). Since φ(r) = sinh r, φ′′(r) =

sinh r, it has constant curvature −1.
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